

Measurement of Z boson production at ATLAS

Aleksei Ezhilov

Petersburg Nuclear Physics Institute

on behalf of ATLAS Collaboration

Introduction

Z boson production are important:

- tests of perturbative QCD
- rapidity distributions sensitive to PDF (initial kinematics)
- input to the background predictions used in many analysis (SM and BSM)
- constrain for p_T^W spectrum important for W-boson mass measurements

This talk will cover: • p_T and ϕ_{η}^* of Drell-Yan lepton pairs at 7 TeV <u>Phys. Lett. B 720 (2013) 32-51</u> • p_T and ϕ_{η}^* of Drell-Yan lepton pairs at 8 TeV <u>Eur. Phys. J. C 76 (2016) 291</u> • p_T and ϕ_{η}^* of Drell-Yan lepton pairs at 13 TeV <u>Eur. Phys. J. C 80 (2020) 616</u> • Z + bjets cross-section at 13 TeV <u>JHEP 07 (2020) 44</u>

REF 2021, DESY, Hamburg

ATLAS experiment at LHC

ee - channel <u>×1</u>0³ pin width 10 10⁹ ATLAS e+e Data 2011 e⁺e⁻ Data 2011-Signal MC 🗕 Signal MC L dt = 4.6 fb⁻¹ 10⁸ $L dt = 4.6 \text{ fb}^{-1}$ • EW + tt Events / Multi-jet $\sqrt{s} = 7 \text{ TeV}$ ∖s = 7 TeV |ŋ^e| < 2.4 10⁶ |η^e| < 2.4 $p_{T}^{e} > 20 \text{ GeV}$ p₊^e > 20 GeV **80**F 10⁵ ٠ 60F 10⁴ **40**⊢ 10³ 20F 10² 0 10 70 90 80 100 110 10-3 10⁻² 10⁻¹ ϕ_n^* m_{ee} [GeV] $\mu\mu$ - channel > 250 × 10³ bin width 10⁹ ATLAS ATLAS μ⁺μ⁻ Data 201 μ⁺μ⁻ Data 2011 Signal MC Events / 1 (🗕 Signal MC $L dt = 4.6 \text{ fb}^{-1}$ $L dt = 4.6 \text{ fb}^{-1}$ EW + tī Multi-jet Events / 10⁷ √s = 7 TeV ∖s = 7 TeV $|\eta^{\mu}| < 2.4$ $10^{6} = |\eta^{\mu}| < 2.4$ $p_{_{
m T}}^{\mu}$ > 20 GeV $p_{T}^{\mu} > 20 \text{ GeV}$ 10⁵ 100 10⁴ 10³ 50 -10² 10 0 70 80 90 100 110 10⁻³ 10⁻² 10⁻¹ m_{μμ} [GeV] ϕ_{η}^{*}

$$pp \rightarrow Z/\gamma^* \rightarrow ll(l = e, \mu)$$

- Data collected in 2011 $(\sqrt{s} = 7 \text{ TeV}, \mathcal{L}_{int} = 4.6 \text{ fb}^{-1})$
 - Selections: single lepton trigger, $\checkmark p_T^{e \ leading} > 25 \ \text{GeV}$ $\checkmark p_T^{e \ subleading} > 20 \ \text{GeV}$ $\checkmark |\eta^e| < 2.4 \ \text{excluding}$ $1.37 < |\eta^e| < 1.52$ $\checkmark p_T^{\mu} > 20 \ \text{GeV}$ $\checkmark |\eta^{\mu}| < 2.4$
 - ✓ 66 GeV < m_{ll} < 116 GeV
- MC signal: POWHEG+PYTHIA

Backgrounds: multi-jet - data-driven method EW and ttbar from MC

- Differential distributions are corrected for the detector acceptance and inefficiencies, bin-to-bin migrations using an iterative Bayesian unfolding procedure in a fiducial volume: $p_T^l > 20 \text{ GeV}, |\eta^l| < 2.4,$ $66 \text{ GeV} < m_{ll} < 116 \text{ GeV}$
- The results in the individual channels are combined using χ^2 minisation
- Result: $\chi^2/n_{dof} = 33.2/34$
- Calculations using ResBos provide the best descriptions of the data (at the level of 4%).

- The cross-section measurements have also been compared to predictions from different Monte Carlo generators (different PS algorithm)
- The best descriptions: Sherpa and Powheg+Pythia8
- The low ϕ_{η}^* part of the spectrum is better described by ResBos.
- Double differential measurements as a function of ϕ_{η}^* and y_Z provide valuable information for the tuning of MC generators.

11/15/21

Measurement of the transverse momentum and ϕ^*_{η} at 8 TeV

$$pp \to Z/\gamma^* \to ll(l = e, \mu)$$

- Data collected in 2012 $(\sqrt{s} = 8 \text{ TeV}, \mathcal{L}_{int} = 20.3 \text{ fb}^{-1})$
- Selections: combination of single lepton and dilepton trigger, isolated leptons,
 - ✓ $p_T^e > 20 \text{ GeV}$
 - ✓ $|\eta^e| < 2.4$ excluding 1.37< $|\eta^e| < 1.52$

$$\checkmark p_T^{\mu} > 20 \text{ GeV}$$

✓
$$|\eta^{\mu}| < 2.4$$

✓ 46 GeV <
$$m_{ll}$$
 < 150 GeV

- MC signal: POWHEG+PYTHIA
- Backgrounds:

multi-jet - data-driven method EW and ttbar from MC • Differential distributions are corrected for the detector acceptance and inefficiencies, bin-to-bin migrations using an iterative Bayesian unfolding procedure for p_T^{ll} and using simple bin-to-bin unfolding for ϕ_{η}^* in a fiducial volume:

 $p_T^l > 20 \text{ GeV}, |\eta^l| < 2.4,$ 66 GeV < $m_{ll} < 116 \text{ GeV}$

• Uncertainties for unfolded results in the electron channel – lower for the ϕ_{η}^*

Measurement of the transverse momentum and ϕ^*_{η} at 8 TeV

Comparison to QCD predictions

Scale on x-axis are aligned according to the approximate relationship $\sqrt{2m_Z\phi_\eta^*} \approx p_T^{ll}$

Finer binning in ϕ_{η}^* while maintaining smaller systematic uncertainties

- low and p_T^{ll} non-perturbative effect and softgluon resummation dominate, the prediction from ResBos are consistent with data
- high values of ϕ_{η}^* and p_T^{ll} more sensitive to the emission of hard partons, the predictions from ResBos are not consistent with data

Comparison to parton-showers approaches

- ~10% disagreement for MC predictions vs the data for Z-peak mass region
- PowhegPythia(AZNLO): tuning was done in 7 TeV data ($p_T < 50$ GeV, Z-peak mass region)
- Differences Sherpa vs the data: ~magnitude, but of opposite sign to Powheg+Pythia vs the data

Measurement of the transverse momentum and ϕ_{η}^{*} at 8 TeV

Comparison to fixed-order and electroweak corrections

- Predictions are not expected to describe the shape of the data for low values of p_T^{ll} due to effect soft-gluon emissions
- The prediction is low by about 15% compared to the data across all m_{ll}
- No significant changes due to NLO EWK correction vs the difference between the predictions and the data

11/15/21

REF 2021, DESY, Hamburg

Measurement of the transverse momentum and ϕ^*_{η} at 13 TeV

ee - channel

$$pp \to Z/\gamma^* \to ll(l = e, \mu)$$

- Data collected in 2015+2016 ($\sqrt{s} = 13$ TeV, $\mathcal{L}_{int} = 36.1$ fb⁻¹)
- Selections: single lepton trigger, isolated leptons,
 - ✓ $p_T^l > 20 \text{ GeV}$

✓
$$|\eta^{e}| < 2.4$$
 excluding
1.37< $|\eta^{e}| < 1.52$

$$\checkmark |\eta^{\mu}| < 2.5$$

- ✓ 66 GeV < m_{ll} < 116 GeV
- MC signal: POWHEG+PYTHIA8
- Backgrounds:
 multi-jet data-driven method
 EW and ttbar from MC

Measurement of the transverse momentum and ϕ_n^* at 13 TeV

ee - channel

 $pp \to Z/\gamma^* \to ll(l = e, \mu)$

- Data collected in 2015+2016 ($\sqrt{s} = 13$ TeV, $\mathcal{L}_{int} = 20.3$ fb⁻¹)
- Selections: single lepton trigger, isolated leptons,
 - ✓ $p_T^l > 27 \text{ GeV}$

✓
$$|\eta^{e}| < 2.4$$
 excluding
1.37< $|\eta^{e}| < 1.52$

$$\checkmark$$
 $|\eta^{\mu}| < 2.5$

- ✓ 66 GeV < m_{ll} < 116 GeV
- MC signal: POWHEG+PYTHIA8
- Backgrounds: multi-jet - data-driven method EW and ttbar from MC

• Differential distributions are corrected for the detector acceptance and inefficiencies, bin-to-bin migrations using an iterative Bayesian unfolding procedure for p_T^{ll} and ϕ_n^* in a fiducial volume:

 $p_T^l > 27 \text{ GeV}, |\eta^l| < 2.5,$ 66 GeV < $m_{ll} < 116 \text{ GeV}$

• Uncertainties for unfolded results in the muon channel – lower for the ϕ_n^*

11/15/21

REF 2021, DESY, Hamburg

Measurement of the transverse momentum and ϕ^*_{η} at 13 TeV

Comparison to predictions

- Sherpa v2.2.1: NLO ME for two partons in the final state and LO ME for up to four partons (based on merging of high-order, high-multiplicity ME) good agreement at high p_T^{ll} and ϕ_{η}^*
- RadISH: combines NNLO prediction of Z+jets production from NNLOjet with resummation of $\log(m_{ll}/p_T^{ll}))$ terms at N³LL accuracy prediction agrees with data for full p_T^{ll} and ϕ_{η}^* spectrum
- Powheg+Pythia8: NLO ME and parton shower with AZNLO tune (optimization based on 7TeV data) describes data well at low p_T^{ll} and ϕ_{η}^*
- Pythia8: LO ME and parton shower with AZ tune (optimization based on 7TeV data) describes data well at low p_T^{ll} and ϕ_{η}^* 11/15/21 REF 2021, DESY, Hamburg

 $pp \rightarrow Z/\gamma^* \rightarrow ll(l = e, \mu)$

- Data collected in 2015+2016 • $(\sqrt{s} = 13 \text{ TeV}, \mathcal{L}_{int} = 36.1 \text{ fb}^{-1})$
- Selections: single lepton trigger, • isolated leptons,

✓
$$p_T^l > 27 \text{ GeV}$$

✓ $|\eta^e| < 2.4 \text{ excluding}$
 $1.37 < |\eta^e| < 1.52$
✓ $|\eta^{\mu}| < 2.5$
✓ $p_T^{jet} > 20 \text{ GeV}$
✓ $|\eta^{jet}| < 2.5$
✓ $76 \text{ GeV} < m_{ll} < 106 \text{ GeV}$
✓ $E_T^{miss} < 60 \text{ GeV}$ if
 $p_T^{ll} < 150 \text{ GeV}$

- MC signal: SHERPA v 2.2.1 and AlpGen
- Backgrounds: multi-jet - data-driven method EW and ttbar from MC

- 4FNS MC predictions are systematically lower for the inclusive one-b-jet case (Alpgen + Py6 4FNS (LO)6, Sherpa Zbb 4FNS (NLO) and MGaMC + Py8 Zbb 4FNS (NLO)).
- The 4FNS predictions agree well with data in the inclusive two-b-jet case (the LO Alpgen + Py6 4FNS (LO) underestimates the data)
- The NNPDF3.010 PDF set in Alpgen predictions gives better agreement with data due to a higher acceptance in the fiducial region.
- The 5FNS simulations adequately predict the inclusive cross-sections for Z + ≥ 1 b-jet and Z + ≥ 2 b-jets.

- 4FNS predictions systematically underestimate the data
- 5FNS describe the data in most cases

- 4FNS predictions systematically underestimate the data
- 5FNS describe the data in most cases
- Significant difference (common to all generators) is found for large values of m_{bb}

REF 2021, DESY, Hamburg

Summary

- Main results of measurements of the ϕ_{η}^* and p_T^{ll} :
 - 7 TeV: Good agreement at low ϕ_{η}^* values for predictions from Sherpa (~2% level); double differential measurements provide valuable information for the tuning of MC generators.
 - 8 TeV (expaned the measurements at 7 TeV): the predictions from ResBos are consistent with the data within certain kinematic regions, especially at low values of ϕ_{η}^* and the predictions from MC generators with parton showers shows ~10% disagreement at Z-peak mass region
 - 13 TeV: Cross-sections differential in the transverse momentum of Z-boson were measured covering up to TeV-range and the combination yields the precision of 0.2% and better for $p_T^{ll} < 30 \text{ GeV}$
- Main results of Z+bjet cross-section measurements:
 - the inclusive cross-sections and the differential cross-sections of several kinematic observables are measured, extending the range of jet transverse momenta to higher values
 - 5-flavour number scheme (5FNS) calculations at NLO accuracy predict the inclusive cross-sections well, while inclusive 4-flavour number scheme (4FNS) LO calculations largely underestimate the data
- Results are available in HepData and Rivet

Thanks for attention