Jet production and TMD evolution

18.11.2021

Based on:
ABM, F. Hautmann, M. L. Mangano, Phys. Lett. B 822136700 (2021)

REFRESUMMATION, EVOLUTION, FACTORIZATION WORKSHOP

Parton Branching (PB) method

- Evolution of TMDs (and collinear PDFs)

FH et al. [PLB 772 (2017) 446-451]
FH et al. [JHEP 2018, 70 (2018)]

- Resummation of soft gluons at LL and NLL
- Solution valid at LO, NLO and NNLO
- Determination of TMDs from the fully exclusive solution
- Backward evolution fully determines the TMD shower
consistently treats perturbative and non-perturbative transverse momentum effects

PB formulation of TMD evolution

[slide by M. van Kampen]

PB evolution equation for TMDs $\tilde{\mathcal{A}}_{a}\left(x, k_{t}^{2}, \mu^{2}\right)$ can be solved iteratively with the Monte Carlo method:

$$
\begin{aligned}
& \tilde{\mathcal{A}}_{a}\left(x, k_{t}^{2}, \mu^{2}\right)=\Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right) \tilde{\mathcal{A}}_{a}\left(x, k_{t, 0}^{2}, \mu_{0}^{2}\right)+ \\
& +\sum_{b}\left[\int \frac{d^{2} \boldsymbol{\mu}^{\prime}}{\pi \mu^{\prime 2}} \int_{x}^{z_{M}\left(\mu^{\prime}\right)} d z \Theta\left(\mu^{2}-\mu^{\prime 2}\right) \Theta\left(\mu^{\prime 2}-\mu_{0}^{2}\right)\right. \\
& \times \frac{\Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right)}{\Delta_{a}\left(\mu^{\prime 2}, \mu_{0}^{2}\right)} P_{a b}^{(R)}\left(\alpha_{s}\left(q_{t}\right), z\right) \tilde{\mathcal{A}}_{b}(\frac{x}{z}, \underbrace{k_{t, b}-q_{t, c}}_{k_{t, a}}, \mu^{\prime 2})]
\end{aligned}
$$

JHEP 01 (2018) 070 [arXiv:1708.03279]

Kinematics in each branching governed by momentum conservation: $k_{t, b}=k_{t, a}+q_{t, c}$ $P_{a b}^{(R)}\left(\alpha_{s}, z\right)$ real splitting function (resolvable branching probability),
$\Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right)$ Sudakov (no branching probability)

$$
\begin{aligned}
& P_{a b}^{(R)}\left(\alpha_{s}, z\right)=\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}}{2 \pi}\right)^{n} P_{a b}^{(R)^{n-1}}(z) \\
& \Delta_{a}\left(\mu^{2}, \mu_{0}^{2}\right)=\exp \left(-\sum_{b} \int \frac{d \mu^{2}}{\mu^{2}} \int_{0}^{z_{M}} d z z P_{a b}^{(R)}\left(z, \alpha_{s}\right)\right)
\end{aligned}
$$

Angular ordering condition: \square

PB formulation of TMD evolution

[slide by M. van Kampen]

Backward evolution with PB method

The TMD evolution equation can be used to do a backward evolution:

$$
\frac{\partial}{\partial \ln \mu^{2}}\left(\frac{\tilde{\mathcal{A}}_{a}\left(x, k_{t}, \mu\right)}{\Delta_{a}(\mu)}\right)=\sum_{b} \int_{x}^{z_{M}} d z P_{a b}^{(R)} \frac{\tilde{\mathcal{A}}_{b}\left(x / z, k_{t}^{\prime}, \mu\right)}{\Delta_{a}(\mu)},
$$

normalize to $\frac{\tilde{\mathcal{A}}_{s}\left(x, k_{t}, \mu\right)}{\Delta_{s}(\mu)}$ and integrate over μ^{\prime} from μ_{i} down to μ_{i-1}

$$
\Delta_{b w}\left(x, k_{t}, \mu_{i}, \mu_{i-1}\right)=\exp \left\{-\sum_{b} \int_{\mu_{i-1}^{2}}^{\mu_{i}^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \int_{x}^{z_{M}} d z P_{a b}^{(R)} \frac{\tilde{\mathcal{A}}_{b}\left(x / z, k_{t}^{\prime}, \mu^{\prime}\right)}{\tilde{\mathcal{A}}_{a}\left(x, k_{t}, \mu^{\prime}\right)}\right\} .
$$

Parton Shower

Implemented in the CASCADE event generator
S. Baranov et al. [Eur. Phys. J. C 81 (2021) 425]

Pert. and non-pert. PB TMD contributions

ABM et al. [PRD 99, 074008 (2019)]
N. A. Abdulov et al. [Eur. Phys. J. C 81 (2021) 752] gluon, PB-NLO-HERAI+II-2018-set1, $x=0.01$

- Evolution broadens initial distribution

See also Mikel's and Sara's talks

ABM et al. [PRD 100, 074027 (2019)] ABM et al. [EPJC 80, 598 (2020)]

- Description of pT spectrum in wide DY mass

Consider the integrated distribution above the jet $\mathrm{p} T$ scale:
$a_{j}\left(x, \boldsymbol{k}, \mu^{2}\right)=\int \frac{d^{2} \boldsymbol{k}^{\prime}}{\pi} \mathcal{A}_{j}\left(x, \boldsymbol{k}^{\prime}, \mu^{2}\right) \Theta\left(\boldsymbol{k}^{\prime 2}-\boldsymbol{k}^{2}\right)$

- e.g. probability of 0.3 that the gluon develops a kt larger than 20 GeV , for $\mu=100 \mathrm{GeV}$
- TMD evolution effects crucial at describing jet production

What we want:

- Treat perturbative and non-perturbative TMD effects
- Include soft gluon resummation
- Include corrections from higher-order fixed-order calculations

Develop a method to combine PB-TMDs with multijet calculations

Multi-jet merging

- Make higher-order ME exclusive by Sudakov suppression
- Avoid double counting between PS and ME
- Improvement of hard, wide-angle emissions

- Description of high-pT phenomena

TMD merging method

ABM et al. [Phys. Lett. B 822136700 (2021)]

- Evaluate the ME for n-jet cross sections
- Reweight the strong coupling according to shower history
- Evolve the ME using the TMD PB evolution
- Shower the events using the backward PB evolution for ISR
- Apply the MLM ${ }^{[1]}$ prescription between the PB-evolved ME and the showered events
[1] M. L. Mangano [NPB 632 (2002) 343-362]
NB: The method could also be applied to merging criteria other than MLM

New merging procedure applicable to TMDs!

From MLM to TMD merg.

ABM et al. [paper in preparation] What about the original MLM applied to TMD events?

- very strong dependence on Rclus
- at large scales ME accuracy lost!

$d(n, n+1)$: square of scale at which ($n+1$)-jet configuration becomes n -jet

Rclus translates into a maximum TMD evolution scale
\qquad naive MLM incompatible with PB TMD evolution

From MLM to TMD merg.

ABM et al. [paper in preparation]

TMD merging

- little dependence on Rclus
- at large scales ME accuracy recovered!

TMD PB evolution decouples from MLM matching

Reduced systematics

Multi-jet cross section in Z production

Merging scale $[\mathrm{GeV}]$	$\sigma[\mathrm{tot}]$ $[\mathrm{pb}]$	$\sigma[\geq 1$ jet $[\mathrm{pb}]$	$\sigma[\geq 2$ jet $[\mathrm{pb}]$	$\sigma[\geq 3$ jet] $[\mathrm{pb}]$	$\sigma[\geq 4$ jet $[\mathrm{pb}]$
23	572.98	87.26	20.27	4.84	1.18
33	563.04	86.15	20.48	4.86	1.19

- 10 GeV variation gives < 2\% change in jets cross sections
- Standard merging algorithms can give over 10 \% change for the same variation of the merging scale CF: J. Alwal etal. [EPJC 53, 473-500 (2008)]

Dependence on merging scale reduced by treating transverse momentum in the initial-state and decoupling its evolution from the parton-jet matching

Combining TMD shower with higher orders

DY pt spectrum

- TMD evolution with multi-jet merging achieved at LO
- Low as well as high-pt now nicely described
- Consistent with MCatNLO PB-NLO at low pT

Combining TMD shower with higher orders

Exclusive jet multiplicity in Z events

ABM et al. [Phys. Lett. B 822136700 (2021)]

Instead of:

- Not only the overall recoill but also the number of jets are described

Di-jet production and TMD merging

Di-jet production and TMD merging

Di-jet azimuthal separation

CMS Experiment at LHC, CERN
Data recorded: Sun Aug 14 13:01:17 2016 CEST
Run/Event: 278820 / 21368498
Lumi section: 18

- Soft radiation dominates at $\sim 180^{\circ}$
- All order resummation needed

See next talks by Qun and Feng

Di-jet production and TMD merging

Di-jet azimuthal separation

- Resummation in terms of PB-TMDs
- Rather good description, need to understand the differences

See steps in this direction in next talk by Qun's

Di-jet production and TMD merging

Di-jet azimuthal separation with an extra softer jet

- Same shape even when unfolding the PB-TMD (resolving an extra softer jet $p_{T} / p_{\text {Tmax }} \sim 1 / 20$)
- Not seen in the original CMS publication for collinear calculations

Conclusions

- PB TMD evolution provides excellent description of DY pt spectrum in a wide range of DY mass
- Parton shower from PB TMD evolution have significant contribution to jet multiplicity and jet pt spectra
- First combination of TMD evolution effects with multi-jet merging for Z pt and jet spectra
- Dependence of the results on the merging scale are smaller than that of standard algorithms
- Back-to-back di-jet azimuthal separation described similarly with and without resolving a much softer radiation

Thank you

Combining TMD shower with higher orders

Jets pt spectrum

- Not only overall recoil but also jet $\mathrm{p} T$

New! ABM et al. [arXiv:2107.01224]

- The description of jet pT improves at high multiplicities

Combining TMD shower with higher orders

ABM et al. [paper in preparation]
$d(n, n+1)$: scale at which ($n+1$)-jet configuration becomes n-jet

- Smoothness merging follows shower Sudakov suppression
- Merging scalle divides phase space for different jet multiplicities avoiding double counting

Systematics

Z pt and phi*

Less than 10\% effect localized around the merging scale

Systematics
 Pt of the jets

Less than 10\% effect localized around the merging scale

Systematics
 Differential jet rates

Up to 20\% effect localized around the merging scale

PB framework
 Phys. Lett. B 772:446451 (2017)
 JHEP 01:070 (2018)
 Phys. Rev. D 99, 074008 (2019)

- TMD determined, no extra parameters
- Full access to splitting kinematics
- TMD evolution implemented in xFitter

Where to find them:

- TMDlib: library of parametrization of TMDs and uPDFs
- TMDplotter: TMD plotting tool

