Seeding in the Tracker Subsystem: Updates on the Seeding Algorithm depending on the Signal Distribution LUXE Simulation and Analysis Meeting

Arka Santra, December 30, 2020 Weizmann Institute of Science, Rehovot, Israel

Setting up the stage:

- Motion of electron in a uniform magnetic field • $qBv = mv^2/R \longrightarrow p = qBR \longrightarrow p[GeV] = 0.3 \cdot B[T] \cdot R[m]$
- (\vec{r}_{Δ}) of the tracker
- Getting the predicted position in the exit plane and in the last layer
 - cut (details later).
- The track fit is done with the Single Value Decomposition (SVD).

 - A flat cut on the fit parameter in many signal tracks does not perform well.

 - multiplicity.

• Getting the momentum from two measurements in the first layer (\vec{r}_1) and the last layer

• Depending on the predicted position from the signal, coming up with a new distance

• The minimum of singular value corresponds to the solution of the linear least square. • Good for high track multiplicity but bad for low track multiplicity bunch crossing • Solution is to come up with different cuts on the fit parameter for different track

• Within 5% is the relative difference between actual signal tracks and the seed tracks found from the algorithm — irrespective of the signal track multiplicity.

Positions prediction, Using More Realistic Dipole Setup from GEANT4

 $Z_{\text{exit}} = L_B \longrightarrow X_{\text{exit}} = \sqrt{R^2 - 1}$ $x_{\text{exit}} = R - X_{\text{exit}} = R - \sqrt{R^2 - 1}$

Tangent equation: $Z = m \cdot X + c$. The tangent gradient, *m*, is -1 over the gradient of the radius at the point where the tangent is defined, i.e.: $m = -1/(\Delta Z/\Delta X)$ at the point $(Z_{\text{exit}}, X_{\text{exit}})$

$$m = -1/(\Delta Z/\Delta X) = -(X_{exit} - 0)/(Z_{exit} - 0) = -(\sqrt{R^2 - L_B^2})/L_B = -\sqrt{\frac{R^2}{L_B^2} - 1}$$
Want to explore or events of the second s

 $p[\text{GeV}] = 0.3 \cdot B[\text{T}] \cdot R[\text{m}]$

0.3*B*

From Noam

Circle equation wrt the origin at the centre of the circle defined by the track: $X^2 + Z^2 = R^2$

$$-L_B^2$$
$$-L_B^2$$

Any point far away from this line is not interesting

oit this reduce ound

Plot from Electron Beam only Setup: Effect of Distance Cut on the Background

straight line: d < 5 mm

Tight Tracks and Loose Tracks Scenario Depending on the Hits in the Tracker Layers

one hit in layer 1 (inner layer).

Loose case if obtained hit is one less than expected hit (nObtained == nExpected - 1) **Any other scenarios are rejected from further processing.**

• The seeding algorithm always starts from one hit in layer 4 (outer layer) and

The First Run with the Updated Algorithm

Usual Seeding Algorithm cuts (discussed before, in backup)

 SVD parameter cut
 Second fit parameter < 0.1 and Third fit parameter < 0.05
 distance from the expected analytical line in x_{dipole} : x_{layer4} line

 The distance d < 5 mm

Approximate	Summary							
multiplicity of true signal tracks	Siq.	S+B,	loose+tight		tight		loose	
	# of Tru	# of seeds w/o fit	S+B	Rel diff	S+B	Rel diff	S+B	Rel d
				loose+tight		tight		loos
1	2.0	22.0	4.0	100%	2.0	0.0%	2.0	0.0
5	6.0	25.5	7.8	29%	5.5	-8.3%	2.3	-62.5
10	10.3	30.0	11.5	12%	9.5	-7.3%	2.0	-80.5
20	19.3	42.8	21.8	13%	18.5	-3.9%	3.3	-83.1
30	33.5	73.0	40.5	21%	34.5	3.0%	6.0	-82.1
50	54.0	104.5	63.8	18%	56.0	3.7%	7.8	-85.6
80	83.3	165.0	100.0	20%	89.5	7.5%	10.5	-87.4
100	103.3	224.8	134.8	31%	108.8	5.3%	26.0	-74.8
130	133.0	316.0	181.3	36%	145.8	9.6%	35.5	-73.3
150	152.5	373.3	208.3	37%	167.5	9.8%	40.8	-73.3
170	170.3	466.3	246.3	45%	194.3	14.1%	52.0	-69.5
185	184.3	516.3	268.0	45%	203.3	10.3%	64.8	54.9
200	201.0	632.5	317.3	58%	230.0	14.4%	87.3	-56.6
220	223.0	819.3	394.3	77%	266.5	19.5%	127.8	-42.7

Relative difference wrt true signal

The Run with the Tighter Cuts on SVD parameters and Distance d (and p_Y)

Usual Seeding Algorithm cuts (discussed before, in backup)
 + SVD parameter cut

Second fit parameter < 0.05 and Third fit parameter < 0.01

+ distance from the expected analytical line in x_{dipole} : x_{layer4}

line

The distance d < 2 mm

+ $|p_{y}| < 0.005 \text{ GeV}$

Approximate multiplicity of true signal	Summary							
	Sig, # of Tru	S+B,	loose+tight		tight		loose	
		# of seeds w/o fit	S+B	Rel diff	S+B	Rel diff	СтБ	Rel diff
tracks				loose+tight		tight	310	loose
1	2.0	22.0	2.0	0%	2.0	0.0%	0.0	-100.00
5	6.0	25.5	3.8	-38%	3.8	-37.5%	0.0	-100.00
10	10.3	30.0	7.3	-29%	7.3	-29.3%	0.0	-100.0
20	19.3	42.8	14.5	-25%	14.5	-24.7%	0.0	-100.00
30	33.5	73.0	32.5	-3%	32.5	3.0%	0.0	-100.00
50	54.0	104.5	52.5	-3%	52.3	-3.2%	0.3	-99.5%
80	83.3	165.0	82.0	-2%	82.0	-1.5%	0.0	-100.00
100	103.3	224.8	102.0	-1%	101.8	-1.5%	0.3	-99.8%
130	133.0	316.0	134.0	1%	134.0	0.8%	0.0	-100.09
150	152.5	373.3	151.0	-1%	150.5	-1.3%	0.5	-99.7%
170	170.3	466.3	169.0	-1%	168.3	-1.2%	0.8	-99.6%
185	184.3	516.3	183.0	-1%	182.3	-1.1%	0.8	-99.6%
200	201.0	632.5	207.3	3%	206.5	2.7%	0.8	-99.6%
220	223.0	819.3	230.8	3%	230.0	3.1%	0.8	-99.7%

A Dust aliffavorat austa ara ataraal	
Put different cuts on steps!	A crude
Steps are determined by the crude	ostimato c
estimation of the signal+background	
multiplicity from the tracker	number of se
Crude because no fit cut done to find	
out the proper seed multiplicity	
A polynomial function fits the number of	available i
seeds without fit with the true signal	tracker laye
tracks.	and layer
High multiplicity case: > 960 possible	
crude seeds	(Before apply

◆Medium multiplicity case: 65 < and <= 960

◆Low multiplicity case: < 65

any fit parameter cut)

	High	Medium	Low			
	All tracks	All tracks	Tight tracks	Loose tracks		
Second SVD Parameter	0.05	0.06	0.1	0.07		
Third SVD Parameter	0.01	0.06	0.1	0.05		
pY [GeV]	0.005	0.005	0.01	0.0075		
distance d [m]	0.003	0.003	0.006	0.004		

N of true sig trks	15.0	20.0	30.0	195
N of seeds	52.0	63.8	86.7	960.9

Result with the Hybrid Step Cut

Approximate	Summary							
multiplicity of true signal	Sig, # of Tru	S+B, # of seeds w/o fit	loose+tight		tight		loose	
			S+B	Rel diff	S+B	Rel diff	S+B	Rel o
tracks				loose+tight		tight		loos
1	2.0	30.5	2.5	25%	2.0	0.0%	0.5	-75.0
5	5.8	34.8	6.3	8%	5.5	-5.2%	0.8	-87.1
10	10.5	39.3	10.5	0%	10.0	-4.8%	0.5	-95.2
20	19.3	53.5	19.3	0%	18.5	-4.1%	0.8	-96.1
30	33.5	87.3	33.0	-1%	33.0	-1.5%	0.0	-100
50	54.0	126.8	54.0	0%	53.3	-1.4%	0.8	-98.6
80	82.8	216.0	84.3	2%	84.0	1.4%	0.3	-99.7
100	102.0	315.8	104.8	3%	103.3	1.2%	1.5	-98.5
130	133.0	461.8	139.8	5%	137.3	3.2%	2.5	-98.1
150	152.5	539.0	156.5	3%	154.5	1.3%	2.0	-98.7
170	170.3	729.8	179.3	5%	174.3	2.3%	5.0	-97.1
185	184.3	806.0	189.3	3%	186.0	0.9%	3.3	-98.2
200	199.8	1024.3	206.8	3%	205.0	2.6%	1.8	-99.1
220	223.0	1344.3	229.5	3%	227.0	1.8%	2.5	-98.9

Within 5%

True signal track multiplicity at L1

Things are better in the low end. **High end can be optimised even more.**

- The message is clear: playing with different cuts improves the situation.
- Sasha's updated samples now can find actual signal tracks on the layers — this will help us identify more suitable cuts to improve the situation even more!

9

Summary

- Playing with the seeding algorithm cuts \bullet
 - The SVD fit parameter cut and the \bullet distance from the x_{dipole} : x_{layer4} really improves the situation.
 - Also the seed momentum in the Y direction
- Some may cost us in efficiency in some ranges but still we cut tight as that can reduce the bkg and the wrong signal combinatorics.

- - Sasha produced them already, need some time to reprocess.
- Some kinematic distribution plots are attached to the agenda page: Link
- Work with the photon+laser to evaluate the algorithm there as well.

x_Exit and y_Exit at the dipole exit from the best fit line

When we have the proper signal-tagging branch in the trees we will re-derive and optimise the cuts properly.

Momentum from 2 measurements: Simple Magnet Dipole setup

To get R, need to extrapolate the track backwards to the dipole exit plane and obtain the x_{exit} coordinate then intercept with the x = 0 line to find $z_{mid} \rightarrow h$. Extrapolation is done using 2 points at layer 4 and 1

$$\frac{A_B + b}{R} \longrightarrow R = h \frac{L_B + b}{x_{\text{exit}}} \text{ and }$$
$$R = h \frac{L_B + x_{\text{exit}} \tan \theta}{x_{\text{exit}}}$$

$$\frac{h}{x_{exit}} = \frac{hL_B}{x_{exit}} + x_{exit}$$

$$\left(\frac{z_B}{z_{\text{exit}}} + x_{\text{exit}}\right)$$
 and $\overrightarrow{p}_{\text{seed}} = \left(\sim 0, p_{\text{seed}} \frac{y_{\text{trk}}}{r_{\text{trk}}}, p_{\text{seed}} \frac{z_{\text{tr}}}{r_{\text{trk}}}\right)$

where p_x can be a random number drawn from the truth distribution at the vertex

Numbers

From Noam

The seeding algorithm

- Keep unique set of tracks from first layer and last layer of tracker.
 - Overlap region is removed (by cutting on x value of the tracks) from the outer stave of first layer (innermost) and from the inner stave of the last layer (outermost).
- Loop over all pairs in layers 4 and 1, now only positron side (x>0).
- Reject pair of clusters if
 - |x1| > |x4| or they have different sign
 - |z1| == |z4|
 - |y_exit| > 5.4 mm
 - |x_exit| < 20 mm and |x_exit| > 165 mm
 - If not one cluster in the road of 130 um connecting vector r1 and r4 in both layer 2 and layer 3.
 - The seed energy is greater than 17.5 GeV or less than 0.5 GeV.
 - The seed energy is calculated from the track.
 - Apply the SVD fit parameter cut and distance cut

SVD track fitting

- A common application of the singular value decomposition (SVD) is in fitting solutions to linear equations.
- Suppose we collect (x_i, y_i) data, which can be fit to some linear homogeneous equation $ax_i + by_i - c = 0$. If we have our data in a matrix A, and the coefficients in some vector v, we can write this problem as Av = 0, where we'd like to figure out what v is given A

- We usually have more data than coefficients, in which case we can't solve this \bullet However, we can fit v to A in order to minimise the value of Av via SVD • Suppose we take the singular value decomposition of $A \rightarrow A = U \Sigma V^{T}$ • If one of the singular values is 0 then we have an exact solution
- If none of the singular values are zero, we have no exact solution
- However, it can be shown that the smallest singular value corresponds to the solution of the linear least squares fitting problem
- Namely, if we want to find the least squares fit to the data, we need to look at the smallest (usually the last) singular value and read the respective column of V to get the best fit coefficients (a, b, c)**From Noam**