Seeding in the Tracker Subsystem: Updates on the Seeding Algorithm LUXE Simulation and Analysis Meeting

Arka Santra, January 5, 2020 Weizmann Institute of Science, Rehovot, Israel

Update on the Seeding Cuts

- Discussed the basic cuts in the previous <u>talk</u>.
 - Not good at very low energy end (< 2 GeV)
 - Relative difference not good for low multiplicity case
- New today:
 - Put an energy cut of > 2 GeV.
 - Loosened the cut in the low track multiplicity region.
 - For low energy (< 4 GeV), road width is now 220 um instead of 130 um
 - The track fit cut and track ymomentum cuts were also changed depending on the track energy and the tight or loose tracks.
 - Full list of cuts in the backup

Seed exit win Seed Energy [Seed energy regio Road width [Pre-fit seed m # of seeds thr # of true signal Track Energy [Track energy regio Category 2nd SVD pa 3rd SVD pa Track y-momentur x4:xExit outliers

	25< xExit <330/2											
dow	yExit <5											
GeV]	0.2 <e<18< th=""></e<18<>											
on [GeV]	E > 4 GeV						E < 4 GeV					
µm]			130	220								
nult.	Large	Mode	erate	Sr	nall	La	rge	Mod	erate	S		
esh.	N>320	50 <n< th=""><th><320</th><th colspan="2">N<50</th><th>N></th><th>320</th><th colspan="2">50<n<320< th=""><th>N</th></n<320<></th></n<>	<320	N<50		N>	320	50 <n<320< th=""><th>N</th></n<320<>		N		
l trks	N>100	15 <n< th=""><th><100</th><th colspan="2">N<15</th><th>N></th><th>100</th><th colspan="2">15<n<100< th=""><th>N</th></n<100<></th></n<>	<100	N<15		N>	100	15 <n<100< th=""><th>N</th></n<100<>		N		
GeV]	2 <e<15< th=""></e<15<>											
on [GeV]	E > 4 GeV						E < 4 GeV					
	All	Tight	Loose	Tight	Loose	A	dl 🛛	Tight	Loose	Tight		
ar.	0.05	0.06	0.06	0.1	0.065	0.	80	0.06	0.06	0.1		
ar.	0.01	0.06	0.06	0.1	0.065	0.	02	0.05	0.05	0.1		
m [GeV]	0.005	0.005	0.005	0.035	0.031	0.0	005	0.005	0.005	0.01		
dist. [m]	0.003	0.004	0.003	0.004	0.005	0.0	005	0.006	0.005	0.006		

Improvement in the relative difference

Approximate	S+B				S-only					
multiplicity of true	# of seeds w/o fit	# of seeds w/ fit	Rel diff	# of seeds w/ fit	Rel diff	# of	# of seeds w/ fit	Rel diff	# of	Rel
Signal tracks			inc. (S+B)		tight (S+B)	seeds w/o fit		inc. (S)	seeds w/ fit	tigh
0 (bkg only)										
1	32.5	2.0	0%	2.0	0.0%	2.0	3.8	88%	2.0	0.09
5	36.8	5.5	0%	5.3	-4.5%	5.5	7.0	27%	5.3	-4.5
10	39.3	8.5	0%	8.3	-2.9%	8.3	9.8	15%	8.3	-2.9
20	56.0	16.5	0%	16.3	-1.5%	17.5	17.0	3%	15.8	-4.5
30	92.3	33.5	3%	33.5	3.1%	41.0	32.5	0%	32.5	0.09
50	132.0	52.5	-1%	52.3	-1.9%	67.3	53.5	0%	53.3	0.0
80	232.8	82.0	0%	82.0	0.3%	134.8	83.5	2%	83.3	1.89
100	333.0	103.0	2%	102.3	1.0%	209.3	103.0	2%	102.5	1.29
130	491.0	136.5	3%	136.0	2.6%	318.8	134.8	2%	134.3	1.39
150	570.8	152.0	1%	151.0	0.3%	377.8	152.5	1%	151.3	0.59
170	774.3	170.5	1%	170.0	1.0%	544.0	172.8	3%	171.5	1.99
185	854.0	183.0	0%	182.5	-0.5%	578.8	184.5	1%	183.0	-0.3
200	1091.0	204.0	3%	203.5	2.3%	782.5	206.3	4%	205.3	3.19
220	1413.0	230.8	4%	228.8	3.2%	1040.0	232.3	5%	230.0	3.79

◆Low track multiplicity region now improved for S+B case ◆The relative difference is within 5% for high multiplicity case for S+B inclusive case, and close to 0% for low multiplicity case.

New electron beam only background sample

- Sasha produced 160 BX electron beam only files over the break.
- Processed them and tried to see the seeds coming from the background hits.

- This reduces a lot of seed tracks from the background
- happen to the tracker.

◆Removed all the background charged particles coming from the x < -25 mm and 380 cm < z < 650 cm

◆In practice, this can be achieved by using a shielding wall so that the leakage from negative x does not

Summary

- Few minor updates to the seeding algorithm made
 - Increased the road from 130 um to 200 um for low energy (< 4 GeV) tracks</p>
 - Changed the distance cuts and track pY cuts for medium multiplicity and low multiplicity region.
 - The fit parameter cuts were also changed.
- Now low track multiplicity region is improved.
- First processing of 160 BX of background samples
 - Need to use the vertex cut to remove unwanted background electrons from negative x side.
 - The cut flow shows that on average per BX we get 1 loose track and 0 tight track

Cut flow from 160 BX of background, seeding done per BX:

(noCut', 17017806), ('x1Gtx4', 7870611), ('x1*x4Negative', 7870611), ('z1Eqz4', 7870611), ('yDipoleExitGt5p4', 1176112), ('xDipoleExitLt25', 1079387), ('xDipoleExitGt165', 464196), ('xDipoleExitLt0', 201238), ('seedEnergy', 146406), ('checkClusterTracksMiddleLayers', 4754), ('checkClusterFit', 1480), ('trackEnergy', 1202), ('checkClusterXDistance', 264), ('checkClusterTrackPy', 170), ('checkClusterTrackPyLoose', 170), ('checkClusterTrackPyTight', 0)

Numbers

From Noam

The seeding algorithm

- Keep unique set of tracks from first layer and last layer of tracker.
 - Overlap region is removed (by cutting on x value of the tracks from the outer stave of first layer (innermost) and from the inner stave of the last layer (outermost).
- Loop over all pairs in layers 4 and 1, now only positron side (x>0).
- Reject pair of clusters if
 - |x1| > |x4| or they have different sign
 - |z1| == |z4|
 - |y_exit| > 5.4 mm
 - |x_exit| < 20 mm and |x_exit| > 165 mm
 - If not one cluster in the road of 130 (220 um for < 4 GeV) um connecting vector r1 and r4 in both layer 2 and layer 3.
 - The seed energy is greater than 17.5 GeV or less than 0.5 GeV.
 - The seed energy is calculated from the track.
 - Apply the SVD fit parameter cut, distance cut and p_Y cut
 - After a good fit, the energy requirement of the track is [2,13] GeV

Tight Tracks and Loose Tracks Scenario Depending on the Hits in the Tracker Layers

one hit in layer 1 (inner layer).

Loose case if obtained hit is one less than expected hit (nObtained == nExpected - 1) **Any other scenarios are rejected from further processing.**

• The seeding algorithm always starts from one hit in layer 4 (outer layer) and

SVD track fitting

- A common application of the singular value decomposition (SVD) is in fitting solutions to linear equations.
- Suppose we collect (x_i, y_i) data, which can be fit to some linear homogeneous equation $ax_i + by_i - c = 0$. If we have our data in a matrix A, and the coefficients in some vector v, we can write this problem as Av = 0, where we'd like to figure out what v is given A

- We usually have more data than coefficients, in which case we can't solve this \bullet However, we can fit v to A in order to minimise the value of Av via SVD • Suppose we take the singular value decomposition of $A \rightarrow A = U \Sigma V^{T}$ • If one of the singular values is 0 then we have an exact solution
- If none of the singular values are zero, we have no exact solution
- However, it can be shown that the smallest singular value corresponds to the solution of the linear least squares fitting problem
- Namely, if we want to find the least squares fit to the data, we need to look at the smallest (usually the last) singular value and read the respective column of V to get the best fit coefficients (a, b, c)**From Noam**