Status of radio detection R&D in Antarctica Interplay of acoustics & radio Klaus Helbing, Wuppertal

- IceCube-UHE detection and possible RASTA enhancement
- Existing Askaryan radio projects in Antarctica: *RICE, AURA, SATRA*
- Status of site exploration in Antarctica: *Refraction, Attenuation, Noise/background*
- Forthcoming: ARA, ARIANNA, ANITA, Westerbork
- Conclusions for design of GZK detector

EVENT RATES

IceCube Collaboration ICRC2005

Detection option	GZK events/year*)
IceCube	0.7
Optical	1.2
Radio	12.3
Acoustic	16.0
Optical+Radio	0.2
Optical+Acoustic	0.3
Radio+Acoustic	8.0
Opt.+Rad.+Acou.	0.1
TOTAL	21.1

*)Numbers calculated, folding effective volumes with ESS GZK neutrino flux model with $\Omega_{\Lambda} = 0.7$

UHE <u>detection</u> – **Optical** BG & SIG Signatures

Enhancing optical UHE neutrino detection

Enhancing IceCube

IceCube

 measures muons (above ~TeV) in the ice

IceTop

 measures electron and muon population on the ground

Radio array

 measures total electron component (muon contribution negligible)

	e±	\times
μ±	Composition	Neutrino
\times	Gamma	

R&D working group in IceCube

- Most general:
 - Extend IceCube and use unique facility and environment/infrastructure at SP:
 Only place to combine
 optical & radio & acoustics & air showers
- Primary motivation:
 - GZK neutrinos
 - Expand acceptance of IceCube for EeV neutrinos by orders of magnitude
- Also:
 - determine EHE neutrino cross section
 - air shower physics (inclined, composition, EHE)

Relation to standard (optical) IceCube

- Benefit from IceCube knowledge and access to South Pole site
- Unique possibilities of combined observations both in-ice and on-ice
- Vision of "guaranteed" neutrino signal ↔ momentum from potential IC discovery
- Keep
 - engineering work force
 - students with inclination towards hardware
 - entrepreneurial aspects of early Amanda/IceCube days

Status of ongoing site studies with ...

- **SPATS**: South Pole <u>Acoustic</u> Test Setup
- **RICE**: Radio Ice Cherenkov Experiment
- AURA: Askaryan <u>Underice</u> Radio Array
- NARC: Neutrino Array Radio Calibration
- **SATRA**: Sensor Array for Transient Radio Astrophysics
- **RASTA**: Radio Air Shower Test Array

In-ice radio with RICE

- AURA cluster:
 - Digital Radio Module (DRM) similar to DOM
 - 4 antennas, 3 Antenna Calibration Units (ACU)
 - IceCube sphere, DOM main board (waveforms)
- 5 clusters: 2 in 06/07; 3 in 08/09 (with NARC)
- 2 channels ("antennas") down to 100MHz
- 15/20 channels are working

Status in ice radio: Index of refraction

- Changing index helps to reduce surface noise pickup
- ... but shadowing for shallow deployment
- Birefringence under study

Detector design considerations

• Sensors:

- Frequency range and band width
- Antennas type
- Geometry:
 - Shadowing effect
 → Deep deployment
 - Ice Temperature
 → Shallow deployment
 - Drilling cost and time
 → Shallow deployment
 - Hole diameter can limit antenna design
 - Wet/dry hole

Unique signature of Askaryan: short pulse, linearly polarized

- Capture polarization?
- Low freq has wider signal cone but more noise
- Narrow holes effect design

Radio attenuation

Radio attenuation: Plans for direct on-site measurements

In ice RFI transients with AURA

RFI transients with RICE

Envelope / TDA Proof-of-Concept Testing South-Pole 08-09

Signals as acquired by ic-scope-ag1 Time Delay=20ns W-E, consistent with Angle-of-Arrival (AOA)

Snowmobile (transient source)

Environment for air shower radio

Askaryan pulses from air shower core

Status summary: Noise

- Noise/EMI/background: significant uncertainties wrt transients potential cost driver (electronics)
 - <u>Acoustic</u>: constant level of noise favorable (compared to sea), all transients seen so far within array come from known sources
 - In-ice Radio: deserves attention
 - RICE:
 - favorable in winter, challenge in summer
 - transient background rate O(1/minute) in multiplicity
 - air showers could be (additional) transient background
 - <u>Air shower radio</u> (on-ice antennas) could be instrumental to get rid of EMI in-ice ... for itself looks promising, work in progress.

Status summary: Attenuation

Mostly known

- great progress in <u>acoustics</u> with last seasons but unexpected result
- known from <u>radio</u> reflection of bed rock, direct horizontal on-site measurements needed and on-going
- Negligible for <u>air shower radio</u>

Status summary: "Refraction"

- Refraction, signal speed, depth dependence:
 no evident show stopper but impact on detector designs
 - good knowledge in <u>acoustics</u>, favorable below 200 m
 - in <u>radio</u> uncertainties can still influence detector design
 - E-field needs further attention to understand signal strength, B-field configuration wrt veto coverage of <u>air shower radio</u>.

To-Do list radio in-ice

- Ice attenuation (shallow, horizontal)
- Coincidences with IceCube/IceTop with in-ice and surface antennas
- South pole RFI map vs. time, again with in-ice and surface antennas
- Possibly produce limit on GZK neutrinos:
 - Sensitivity calibration
 - Life time
 - Simulation
- Clearly man power limited so far espy. at PhD and Postdoc level
 - UW, UMD, ... hiring e.g. 1 Postdoc changing from Wuppertal starting (06/2010)
 - more to come from DESY?

Current implications from site exploration

 GZK is main science motivation long attenuation length for radio signals in ice

⇒ Askaryan radio detector in ice main instrumentation and design driver

- Pursue integrated approach of air shower radio detection together with neutrino detection for
 - additional (EHE) vetoing
 → increased overlap with optical
 - EMI reduction and monitoring
 - air showers may provide test beam for in ice
 - ... and of course air shower physics
 - use joint infrastructure

Role of acoustics

- Reevaluation of hybrid option needed in view of shorter than expected attenuation length
- Finish site exploration e.g. understand attenuation mechanism and noise sources
- Acoustics accompanying radio:
 - shallow co-deployment in narrow holes feasible?
 - extra cost reasonably small fraction
 ... then
 - Hand full of coincidences that no one else in the world can do – independent reco + signal
 - Add <u>independent evidence</u> for neutrinos to radio signals

Forthcoming radio projects: ARIANNA

ANITA: Radio detection in/on ice

Modeling Surface Roughness

SC	ales	categories	amplitude / rms height	correlatio n length	coverage	www.physics.ucla.edu /~moonemp/rough
LARGE (meter)	sastrugi	~30cm (average)	8m	about half of the continent	ness	
	snow dunes	~70cm (average)	13m			
SM (cent	1ALL timete r)	micro- roughness	~few cm	30-60cm	entire continent r	simulation of rough surface (18mx18m) ns height=0.65m, correlation length =13m
			- TAT	ndles		Fresnel
			NY.	Dce (T) all a	geo. f	acet
			N.	transmitta).2	
Dookayka, APS08					0 45 46	$\lambda = 50$

angle of incidence (degrees)

GZK neutrino signals from the moon

RFI from "civilization", radio from air showers and 2 events

- Almost all events associated with known bases,
- Remaining events dominated by horizontal polarization: reflected geosynchrotron from air showers
- ANITA-II: 2 remaining Vpol events on 1 backgrd → new flux limit.

Why Hybrid?

Experience from recent projects:

AUGER (+), ANITA (-)

- Signal Identification
- Noise Reduction
- Detector Calibration
- Event Reconstruction
- Energy and Direction Resolution

Askaryan Radio Array (ARA)

ARA sensitivity

Measure diffuse flux of GZK neutrinos for a wide range of cosmic ray compositions.

Once flux known: Design astrophysical observatory for GZK energy regime.

... possibly including acoustic and air shower radio

Conclusions & Outlook

- Site exploration
 - very prolific (several publications in pipeline)
 - Short attenuation length in acoustics
 → Askaryan radio primary driver
 - Hybrid option being reevaluated
- Upcoming seasons to clarify
 - deployment options (depth, dry/wet)
 - choice of pulse shaping, trigger, digitization
- ... head out to extend IceCube and IceTop by factors at the EHE frontier
- Antarctica is unique place for R&D !!

Thank you!