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Aim of SPATS: Ice properties (10 − 100 kHz)

➡ Get realistic sensitivity estimate for an acoustic neutrino telescope

• Speed of sound and its variation with depth

- significant refraction would make vertex reconstruction difficult

• Attenuation length

- determines sensor spacing / effective volume of neutrino detector

- frequency dependence allows to determine attenuation mechanism

• Noise floor

- determines energy threshold

• Transient noise sources

- impulsive noise must be separated from neutrino signal
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Hardware overview
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South Pole Acoustic Test Setup (SPATS)

125 m

302 m

250 m

• 4 strings in
IceCube drill holes

• instrumented depth:
80 m − 500 m

• per string:

- 7 sensors

- 7 transmitters

• String-PC

- digitization

- time stamping

- monitoring (p, T)

• Master-PC

- data storage

- GPS clock

- data transfer via satellite
Strings A, B, C installed in 2006/07
String D installed in 2007/08
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SPATS stage design

Sensor:
• 3 channels / sensor
• pre-amplifier
• analogue signal transmission
• steel pressure housing

Transmitter:
• ring shaped piezo ceramic 

coated in resin
• HV generator

String-D:
• improved sensors:

mechanical decoupling of sensor 
channels
• improved transmitters:

higher power
• HADES:

alternative sensor design with 
piezo ceramics outside the steel 
housing
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Data taking modes
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• Triggered mode: 45 minutes of every hour

- Threshold trigger on 3 sensor channels / string

- Threshold 5.2 σnoise

- Offline coincidence building

• Noise monitoring: 0.1 seconds of every hour

- Untriggered read-out @ 200 kHz

- All 3 channels / sensor simultaneously

- Loop over all sensors

• System health monitoring: once every hour

➡150 MB / day transmitted via satellite
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Distance: 216 m
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Extended range: The retrievable pinger 2007/08

Emitter

HV Generator

• Use newly drilled IceCube holes to lower retrievable 
transmitter

- increased distance range for attenuation length 
measurements

- sound speed depth profile

- relative sensor calibration

Pinger swinging in hole?
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HV pulser 

 emitter
ITC-1001

centralizers

The “stabilized” pinger 2008/09
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CS6-0 hole 28 down-going CS6-0 hole 28 up-going

High quality data!
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The “multi-frequency” pinger 2009/10
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• Frequency dependence of attenuation length ⇒ attenuation mechanism

- Absorption: frequency independent; Scattering: αatt ∝ f4

• Deep stops (up to 1000 m) to measure sound speed and attenuation
in deep ice and on inclined paths

- Also interesting for Glaciology (ice crystal orientation)

• Data under study
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SPATS

Pinger 08/09

Pinger 09/10
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Pinger holes 77

71
70

69

55

Pinger 07/08

Horizontal baselines 
from 125 m
to 1023 m

Minimize polar and 
azimuthal variations
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Speed of sound
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After-pulses observed in some pinger runs

~31 ms
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• After pulses observed for near-distance pinger sensor combinations

- Arrival time compatible with expected shear wave velocity,

- BUT transmitter in water (no direct production of shear waves possible)
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Complicated water → ice transmission

side view

waterice

TPTS

RP

top view

waterice

TS

TP RP
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• Mode conversion at interfaces

- at larger incident angle, shear waves have increased amplitude
(and P waves have decreased amplitude!)

• For large incident angles need 3D calculation of

- θincident

- then RP(θincident), TP(θincident), TS(θincident)
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Sound speed depth profile

• 2 combinations, 125 m distance 
from pinger data season 2007-2008

• Better than 1% accuracy

• First measurement in situ for P and S 
waves

agreement
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gradient 
consistent with 0

P wave S wave

generated at
water-ice
interface
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Attenuation length
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Attenuation length

Analysis αatt (km-1)

Pinger data
(time domain)

3.20 ± 0.57

Pinger data
(frequency domain)

3.75 ± 0.61

Inter-string data
(same level)

3.16 ± 1.05

Inter-string data
(3-level ratios)

4.77 ± 0.67

Transient events 3.64 ± 0.29

• No significant evidence for depth dependence, but not excluded

• Unclear frequency dependence: absorption or scattering?
(analysis with new pinger data in progress)

Expectation: several kilometers ↔ Measurement: 300 m
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Pinger attenuation analysis

• Signal energy E calculated for each channel
and over all pinger holes,
noise subtracted from pinger-off runs

• Linear fit of y = ln (distance × √energy)
yields attenuation coefficient α

• 47 independent measurements;
45 after quality cut |α| ≥ 3 σα

• Weighted mean value and
width of distribution:
α = 3.20 ± 0.57 km-1 ↔
λ = 313 ± 57 m
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Inter-string attenuation analysis
• Inter-string data:

- pulse with a frozen-in transmitter

- listen with all the other sensors

• Same-level method: 
combine a single transmitter
with all sensors at the same depth

- Systematic uncertainty:
combines unknown azimuthal
response of sensors and transmitters

- α = 3.16 ± 1.05 km-1 

• Ratio method:
ratios of all the combinations

- Higher statistics

- Systematic uncertainty:
combines unknown azimuthal and polar
response of sensors and transmitters

- α = 4.77 ± 0.67 km-1
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Transients attenuation analysis

• “Cracking” in refreezing IceCube 
holes

- single pulses observed with 
SPATS sensors at different 
distances

- pulses have frequency 
contributions up to 80 kHz

• Attenuation coefficient derived 
from 13 events (statistical errors 
only)
α = 3.64 ± 0.29 km-1

20

Transient event from hole 19 refreezing

336 m

632 m

744 m
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Absolute noise level
&

Sensor calibration

21
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Noise: properties and temporal evolution

• Gaussian and stable over long time

• Peaks correlated with IceCube drilling, inter-string data taking

• Hypothesis: freeze-in improves coupling to ice causing noise level to 
increase and then stabilize in the first couple months

22

Excess zeroes:
known “feature”

of the ADC

σ 
(V

)

17 Jun 0824 Dec 07

IceCube drilling

400 m

320 m

250 m

σ increase
after deployment
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Absolute noise level

• SPATS sensors have been calibrated in water at 0℃ prior to deployment
(relative to a reference hydrophone SensorTech SQ-03)

• But, can we use this calibration for in-situ measurements at South Pole?

- Temperature −50℃
- Increased static ambient pressure

- Different coupling from medium to sensor (acoustic impedance)

• In-situ calibration is challenging, but

‣Can study different effects separately in the lab

23
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Wuppertal Water Tank
11 m3 water

Aachen Ice Tank
3 m3 bubble free ice

Uppsala Pressure Vessel
liquid filled,
cable feeds,

up to 1000 bar
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Sensitivity dependence on temperature

• SPATS sensor cooled down in air

• Transmitter ITC-1001 at room temperature;
pulse repeated at 5 Hz

• Peak-to-peak amplitude is a measure for 
sensitivity

➡From all channels and cycles:
Sensitivity increases by factor 1.5 ± 0.2
from 0 to −50℃

25



Timo Karg (U Wuppertal) Status of Acoustic R&D

Sensitivity dependence on pressure

• Sensor in liquid inside pressure vessel

• Transmitter coupled from outside to steel vessel (pressure free)

• Peak-to-peak is a measure for sensitivity

• No systematic sensitivity variation with pressure observed

• Sensitivity variation due to pressure < 30% from 0 to 100 bar

26

Sensor

Transmitter
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How to calibrate in ice? - Reciprocity method

27

SPATS sensor

Transducers

HADES sensor

HADES sensor

Transducer

Transducer

• Allows calibration without an
absolutely calibrated reference

• Method tested in water: results highly reproducible

• Freeze as many equilateral triangles as possible

60 cmMRx =

√
2a

ρf

U1U ′
1

U2I ′
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Estimation of noise level (10 – 50 kHz)

28

• Use sensitivity correction factor of 1.5 (from temperature)

• Sensitivity change due to freeze in under study

- expect results in next three months

• Different approaches agree within a factor of 2

• In-situ measurement with different type of glaciophone desirable

HADES sensors
self-noise dominated

using full freq. dep. calibration

using av. sensitivity
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Transient sources
&

Event reconstruction

29
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The very first transient events in SPATS

30

There’s a point source!

IceCube hole positions

“Rod-well”: sub-surface cavern used as water reservoir during drilling
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• Offline search for coincidences in time

• Coincidence window: 200 ms (= 700 m sound propagation)

• Apply channel and string multiplicity requirement

• Take only first hit per channel (ignore S waves and multiple triggering)

• Assume constant sound speed: 3850 m s-1

• Reconstruct source location and emission time using analytical or numerical 
TDOA (time difference of arrival) technique

31

Coincidence and localization
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• Only shallow (top 200 m) transients observed outside IceCube drilling

• Refreezing of close IceCube holes and Rod-wells are main (only) sources

• “Smearing” understood artifact from reconstruction
(constant sound speed assumed)

32
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• SPATS is able to monitor the refreezing of IceCube holes

- quiet period after drilling

- exponential decay of activity

- development of water compartments in the hole
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R=700 m

R=1000 m

R=700 m

R=400 m
R=1 km, 0<z<1 km

V=1.698 km^3 (4 Events)

R=0.7 km, 0<z<1 km
V=0.572 km^3 (3 Events)

R=0.4 km, 0<z<1 km
V=0.059 km^3 (2 Events)

Icecube Center
x=46 m; y=-34.5 m
Acoustic Center

x=23.5 m; y=379.7 m

Quiet Periods: 28.08-31.10.2008, 01.03-31.10.2009

Event 1    05.09.2008 
x=837.9, y=276.8, z=-77.1

Event 3    05.04.2009 
x=274.3, y=651.8, z=-64.9

Event 2    20.09.2008 
x=318.6, y=749.8, z=-95.7

Event 4    11.10.2009 
x=130.8, y=675.3, z=-68.6

No “non-IceCube” transients observed below 100 m
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New DAQ software

36

time

rolling time window

• Online coincidence building

- lower trigger threshold

• Currently being tested
at South Pole
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Aim of SPATS: Mission nearly accomplished

• Speed of sound and and Refraction

- speed of sound constant below 200 m
no refraction

• Attenuation length

- λ = 300 m (20% uncertainty), factor 30 smaller than expected
larger influence of scattering and/or absorption?

- frequency and depth dependence under investigation

• Noise floor

- Gaussian and stable

- Comparable to deep sea (with reasonable assumptions)
better results soon to come

• Transient noise

- Small rate and all deep events from identified sources
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Open questions and Plans

• Absolute noise level

- Deployment of low noise sensor pre-calibrated in ice
planned for 2010/11

• Study mechanism of surprisingly short attenuation length

- Interest from Glaciology community

- Data available from “multi-frequency” pinger

➡ Have robust sensitivity estimate for acoustic technique at South Pole
within next 12 months
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