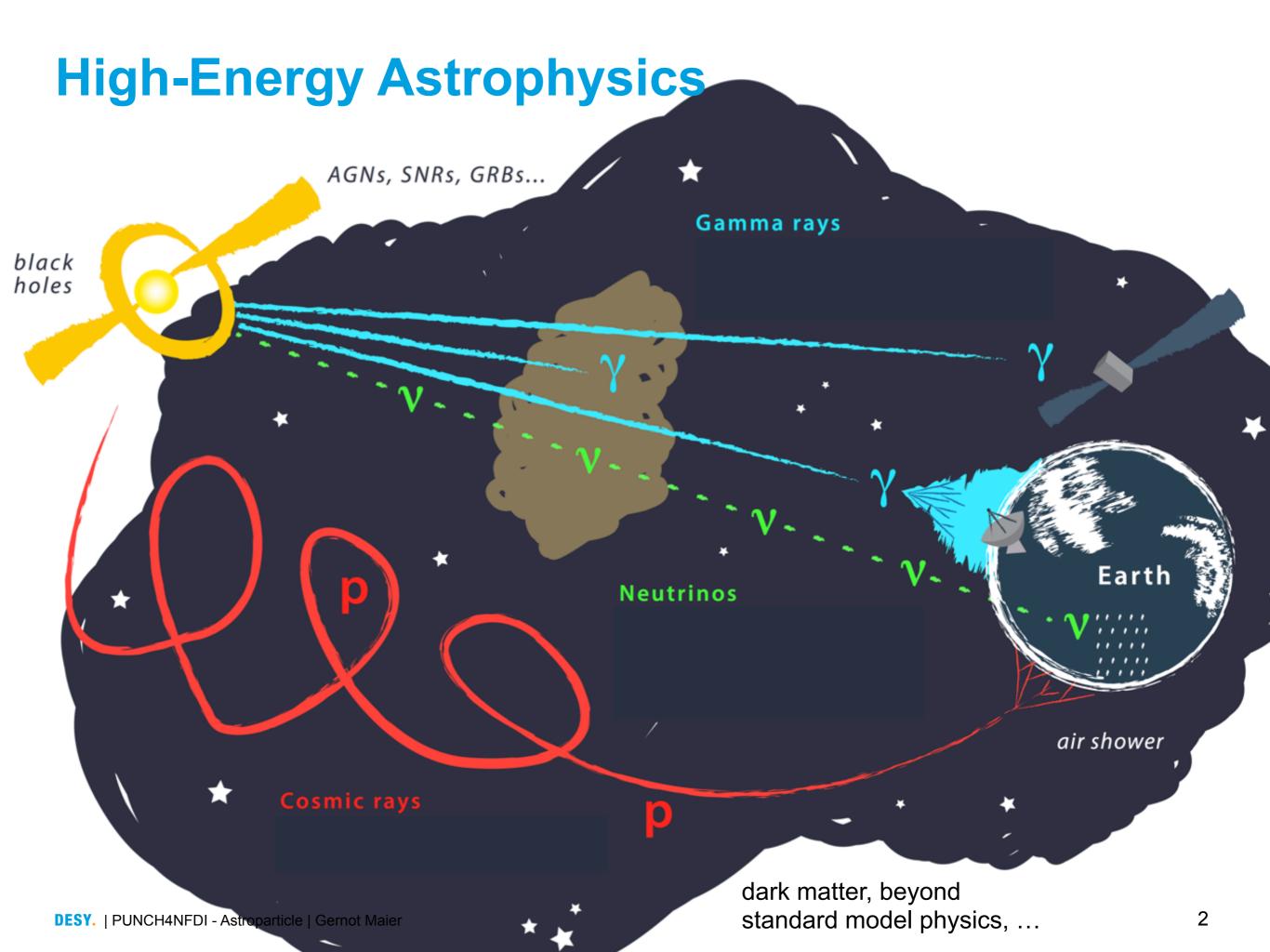

Astroparticle / highenergy community

PUNCH4NFDI Open Data Workshop

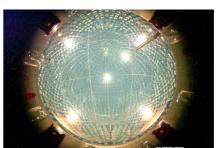

2021, Feb 11

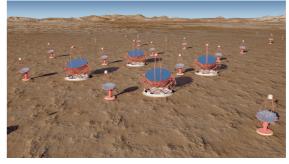
Gernot Maier

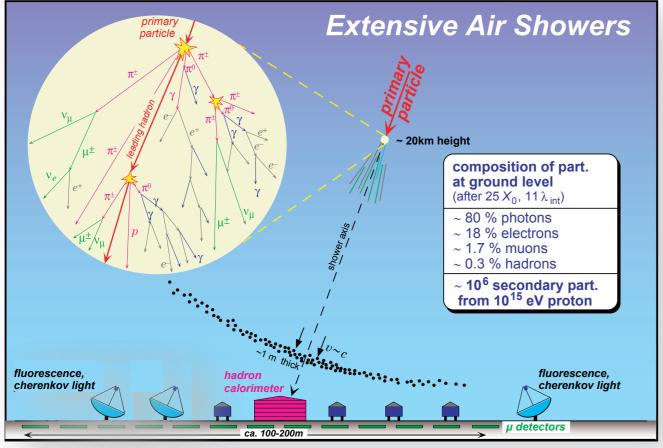
Astroparticle

Theory, Experiments, Observatories.

- Theory and Simulations
- Experiments
 - large international collaborations (IceCube, Auger, H.E.S.S., ...)
 - national collaborations / groups (CONUS, neutron-monitors, ...)
- Observatories
 - international organisations (NASA, ESO, CTAO, ...)
- Detector Development
 - e.g. photodetector or optics development







Data structures - Event lists + Instrument Response

Data structure for most physics analysis very simple.

Per Event:

- classification (p, Fe, gamma, ..)
- energy
- direction
- time
- detector state (e.g., pointing)

Observing period

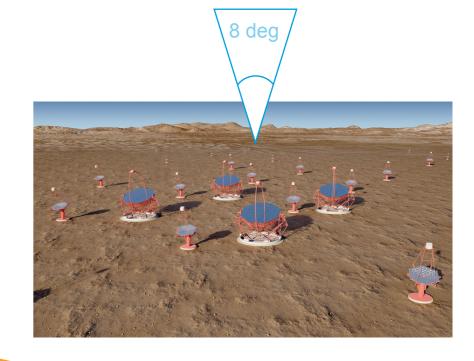
- instrument response (effective detective area, energy migration, pointspread function)
- detector uptime

(obviously on DACQ level and intermediate levels much more complicated)

Fermi Gamma-ray Telescope

A showcase how observatories work

- Gamma-ray telescope operated by NASA
 —> survey instrument
 (+DOE, institutions in France, Germany, Japan,
 Italy and Sweden)
- All high-level data products available to the community (<1 day)
- Prompt data (e.g., GRBs) and notification (within <~15 s of detection)
- Services by NASA:
 - data (events+calibration) in common formats (FITS)
 - open source software tools
 - user support desk & documentation
 - cross-mission accessibility (e.g. through NASA's HEASARC archive)
 - catalogues


Most publications not by the Fermi Team

1 🗆	analysis	2021/03 rmi-LAT uncertain gamma-ray sour c, Milos; La Mura, Giovanni	es by ma	≔ achine	learning
2 🗆	2021ApJS25213A First Fermi-LAT Solar Fla Ajello, M.; Baldini, L.; Basti			Ħ	
3 🗆	Clusters	2021/01 Search with 12 Years of Fermi LAT Malyshev, Denys; Stegen, Christoph-Ale			-
4 🗆		2021/01 of chaos in γ-ray light curves of so , M.; Żywucka, N. and 1 more	elected Fe	≔ ermi-L/	AT blazars
5 🗆	quasars	2021/01 emission region in the brightest Fo	ermi-LAT 1	≔ flat-sp	ectrum radio
6 🗆	blazars	2021/01 cited: 1 ameter extraction from light curves uca; Wagner, Sarah M. and 3 more	of Fermi-	≔ LAT ol	served
7 🗆		2020/12 cited: 1 of V549 Vel 2017: A Subluminous (ranz-Josef; Munari, Ulisse and 4 more		≣ ay No\	≘ ∀a?
8 🗆	2020ApJ905112F GRB Fermi-LAT Afterglov Fraija, N.; Laskar, T.; Dichia	2020/12 cited: 2 ws: Explaining Flares, Breaks, and ara, S. and 4 more	Energetic	≔ Photo	ns

CTA Gamma-ray Telescope

Future observatory for gamma-ray astronomy.

- Gamma-ray telescope operated by CTAO
 - —> pointed instrument ★
 - +developed by a worldwide collaboration large German contribution
- All high-level data products available to the community (open data after proprietary period)
- Prompt data (e.g., GRBs) and notification (within ~100s of detection)
- Services by CTAO:
 - data (events+calibration) in common data formats (FITS)
 - open source software tools
 - user support desk & documentation
 - cross-mission accessibility (possibly through ESO archive)
 - catalogues

Key difference to Fermi!
Observation proposals led
by Principal Investigators

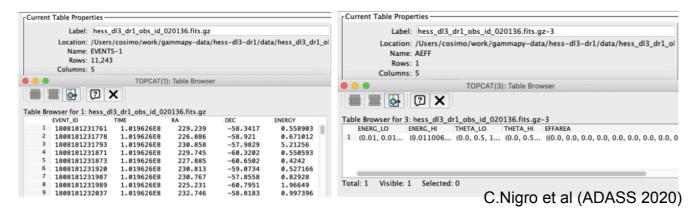
CTA Data policy not finalised yet (e.g., 1 year of proprietary period; afterwards open).

Similar to X-ray
telescopes
(XMM, Chandra)
>50% of all publications
based on archival data

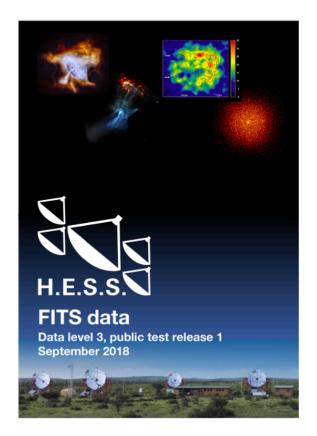
Gamma-ray experiments

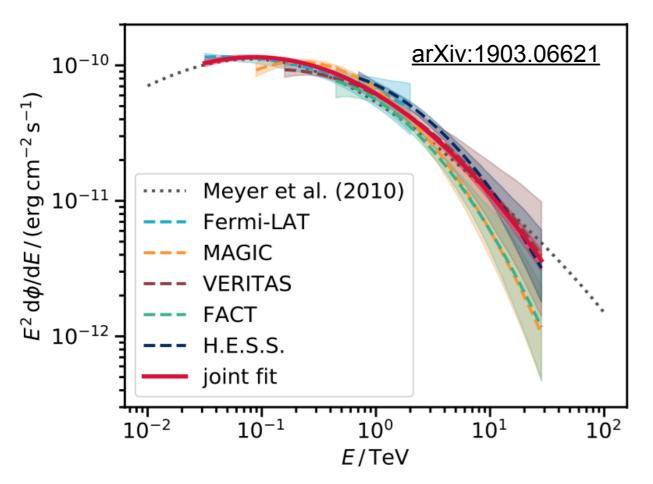
How to access decades of valuable data.

- Operating gamma-ray observatories H.E.S.S., FACT, MAGIC, VERITAS
 - operated by international collaborations
 - no sharing of data (and data model); no or limited sharing of software; expert knowledge required
 - legacy archives
 - multi-instrument and multi-wavelength analysis
- ongoing community effort
 - common high-level data formats
 - public software tools
 - workflows and archiving
 - 'future proof' involvement of upcoming instruments (CTA Observatory)

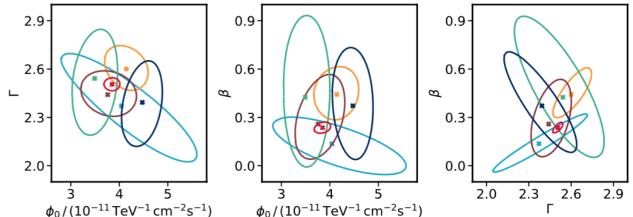

Standardisation of data formats in gamma-ray astronomy

event level plus instrument response functions

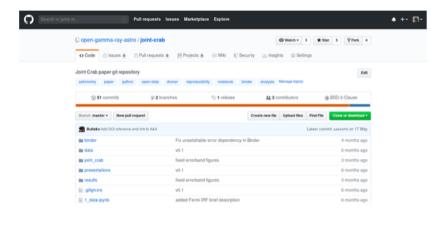

data level	description	size
DL0	raw output of DAQ	\sim TB $/$ tel. $/$ night
DL1	calibrated quantities (charge, arrival time)	\sim 10 GB $/$ night
DL2	reconstructed shower parameters	$\sim 10^2$ MB $/$ run
DL3	reduced γ ray candidates $+$ response functions	$\sim 10^2 \; ext{kB}$
DL4	science data products: spectra, light curves, skymaps	\sim 10 kB

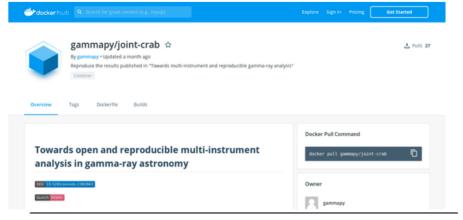

 based on existing standards in astronomy (see Fermi LAT) with all advantages and disadvantages

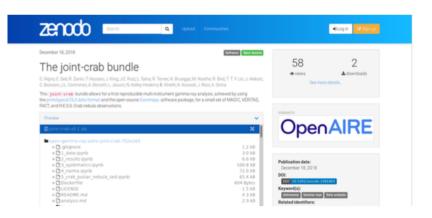
- open source software (e.g., gammapy, ctools)
 software used for future CTA
- realistic scenario for public data archives
 - e.g., first H.E.S.S. data release (arXiv:1810.04516, zenodo)



Multi-instrument analysis

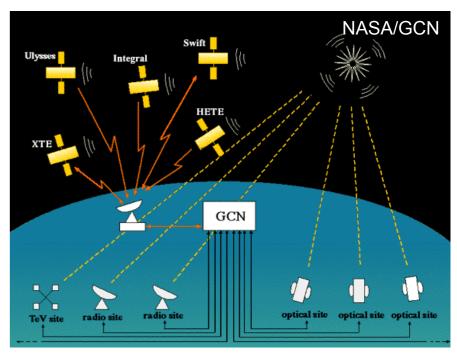



Combined energy spectrum of Crab Nebula obtained with data from **five** different instruments


—> joint likelihood taking systematics consistently into account

Reproducibility workflow based on git, docker, zenodo

C.Nigro et al (ADASS 2020)

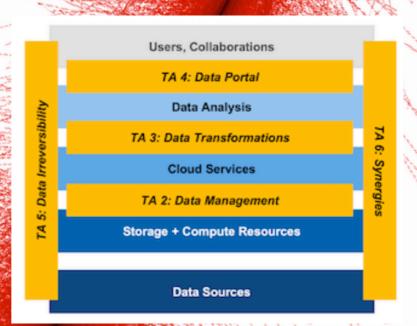

Transient Alert streams

- multi-wavelength and multi- messenger
 - gravitational waves, radio (SKA), optical (V.Rubin, ZTF), X-ray, gamma rays (CTA), neutrinos (IceCube), cosmic rays (Auger), ...
 - few alerts per year to millions / day
- alert streams almost by definition public data

(alternative: private with many bilateral MoUs)

- automatic & reprocessed alerts
 - automatic = telescope repointing without human interaction; real-time analysis and feedback
- alert processing increasing complex
 - (no) follow up, real-time results

VO Events = standard protocol for transient events (XML)


transient broker systems

alert processing, filtering, augmentation, prioritising, archiving (e.g., AMPEL)

Conclusions & PUNCH4NFDI

- science data portal & archives
 - data/software/documentation/support
 - MC / theory / modelling
- efficient management of research data products
 - observatory model
- data transformation & maximum exploitation by combination of data sets
 - standards for data and metadata
 - open analysis tools & community software
 - cross-disciplinary interest on data
- real-time decisions for transient science
- outreach, citizen science, training

Open-data activities

- Piere Auger Observatory: https://www.auger.org/index.php/science/data
- KASCADE (KCDC): https://kcdc.ikp.kit.edu/
- IceCube: https://icecube.wisc.edu/science/data
- KM3Net: https://www.km3net.org/km3net-infradev/open-access-to-km3net-data/
- ANTARES: https://antares.in2p3.fr/publicdata.html
- MAGIC: http://opendata.magic.pic.es/
- HESS: https://www.mpi-hd.mpg.de/hfm/HESS/pages/dl3-dr1/
- FACT: https://fact-project.org/data/

•