

Magnetic Measurement Systems for Superconducting Undulators

IBPT – Institute for Beam Physics and Technology

Andreas Grau

for

N. Glamann¹, D. Saez de Jauregui¹, S. Casalbuoni²

¹ Karlsruhe Institute of Technology, Karlsruhe, Germany
 ² European XFEL GmbH, Schenefeld, Germany (on leave from KIT)

For valuable input, thanks to: M. Kasa, ANL; T. Hayler, C. Macwaters, J. Boehm, B. Shepherd, STFC; N. Mezentsev, BINP

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Overview of a selection of existing measurement setups to characterize superconducting undulators

- Introduction
- Magnetic measurement techniques suitable for SCUs
- Characterization setups for short coils
- Existing setups for long coils (~2m, vertical, horizontal)
- Testsetups for devices in the final cryostat
- Summary, measurement techniques pros and cons

Motivation

Superconducting insertion devices, undulators, gain more and more interest within the accelerator community worldwide especially at advanced light sources.

Main Tasks:

- Quality assessment of the devices before installation in an accelerator
- Precise local field measurements of individual devices
- Field integral measurements and minimization
- Improvement of magnetic field properties
- Alignment of several devices

Main errors in superconducting undulators

Field errors are mainly caused by:

- Mechanical deviations of the pole position e.g. the pole height
- Deviations in the period length
- Bending of the yoke
- The position of the superconducting wire bundles
- Pole and wire bundle size

4

Andreas Grau - Magnetic Measurement Systems for Superconducting Insertion Devices

Measurement techniques suitable for SCUs

Characteristic working environment:

- Low temperatures (≤ 4K)
- Narrow gap (≤ 8 mm)
- Evtl. in-vacuum, horizontal arrangement as in final devices

Measurement of field integrals, integral minimization and coil alignment (wire measurements):

- Rotating coil
- Moving stretched wire
- Stretched wire with constant current
- Stretched wire (vibrating)

Local field measurements:

- Longitudinal field measurements stepwise by Hall samples
- Pulsed wire, vibrating wire

20.04.2021

Characterization setups for short coils (I)

KIT (CASPER I)

- Operating vertically, test of mock-up coils in LHe
- Maximum dimensions 35 cm magnetic length and 35 cm in diameter
- Perform magnet training and quench tests, inductance measurements, test new winding schemes, new superconducting materials and wires, new field correction schemes
- Magnetic field distribution measured by 3 Hall samples on a sledge, calibrated at 4 K
- One in the middle and two at ± 10mm perpendicular to the beam axis to measure roll off
- Sledge moved from outside between precisely machined stainless guiding rails by a linear stage with stepper motor, gear box and a low expansion coefficient non magnetic tube (system resolution 3 μm)
- Hall samples calibration in a Physical Properties Measurement System of the Institute for Technical Physics (ITEP) at the KIT

Further instrumentation

- Keithley constant current source and voltmeter (Hall samples)
- 1500 A power supplies

6

• Quench detector, quench diagnostics (100 kHz sampling rate)

KIT - Institute for Beam Physics and Technology

20.04.2021 Superconductin for Advanced I

Superconducting Undulators for Advanced Light Sources

Andreas Grau - Magnetic Measurement Systems for Superconducting Insertion Devices

Characterization setups for short coils (II)

Superconducting Undulators 20.04.2021 for Advanced Light Sources

7

Andreas Grau - Magnetic Measurement Systems for Superconducting Insertion Devices

Characterization setups for long coils (LHe)

ANL

8

Two LHe bath cryostats, ~2 m and ~4 m deep, scanning system for magnetic measurements.

Setups

Bath cryostat LHe, height ~4.5 m Diameter ~700 mm, magnet length up to 2.5 m magnetic field measurement system.

Coil training

- Preliminary magnetic measurements using a Hall probe calibrated at 4.2 K
- Inductance measurements

Tasks solved

- Magnet training, check coil commutations and polarity and maximum field
- Quench analysis
- Quench protection testing
- Inductance measurements
- Magnetic field mapping with Hall sample array
- Examination of weak single poles of long coils (replacement)

BINP

Courtesy of N. Mezentsev, BINP

20.04.2021 Superconduct for Advanced

Superconducting Undulators for Advanced Light Sources Andreas Grau - Magnetic Measurement Systems for Superconducting Insertion Devices

Characterization setup for long coils (conduction cooled)

Measure magnetic field distributions of superconducting coils with dimensions like in "real" IDs (e.g. up to ~2 m length, ~50 cm diameter, conduction cooled, arrangement horizontally)

Field integral measurements:

Moving stretched wire

- Quench detection
- Quench analysis

 (64 channels, max.
 sampling rate 200 kHz)
 Inductance measurements

Local field measurements:
Hall probes, calibrated at 4.2 K

A. Grau et al., IEEE Trans. on Appl. Supercond. 9001504 22-3 (2012)

9

Superconducting Undulators for Advanced Light Sources

Andreas Grau - Magnetic Measurement Systems for Superconducting Insertion Devices

CASPER II (Local field)

Hall samples on Guiding Retro-,,small" sledge rails reflector

Characterization of "full scale" SCU coils (conduction cooled)

- Measurement length 1800 mm, step wise (50 μm 500 μm)
 - Hall probe mounted on a sledge moving along the undulator length (pulled), between precisely machined guiding rails
- 3 Hall probes calibrated to \pm 90 μ T (PPMS System at Institute for Technical Physics)
- "Small sledge" on measurement sledge allows shifting of middle Hall probe ± 10mm (Peak field comparison of all Hall samples possible, reduces errors
- \bullet Independent longitudinal position determination by laser interferometer (sub- μm accuracy/resolution) pointing on retroreflector
- Current feedthroughs for ~2000 A (main coils) and 6 correction coils (20 A, field integral optimization)

Local and integral field measurements can be performed during the same thermal cycle !

10 20.04.2021 Supercon for Adva

Superconducting Undulators for Advanced Light Sources Andreas Grau - Magnetic Measurement Systems for Superconducting Insertion Devices

CASPER II (Field integrals)

Stretched wire

- Movement by piezo stages
- Wire tension applied via constant force spring (6 N)
- Induced voltage amplified by a FEMTO DLPVA and measured by a Keithley Nanovoltmeter.

Andreas Grau - Magnetic Measurement Systems for Superconducting Insertion Devices KIT - Institute for Beam Physics and Technology

11

20.04.2021 Superconducting Undulators for Advanced Light Sources

Measurement systems for devices in final cryostats (I)

Stretched wire with direct current (field integrals I1 and I2)

Measurement method based on the interaction of a wire with a direct current I with magnetic field, is similar to the interaction of an electron beam with magnetic field.

- Measure field integrals at any field level (static, minimization, multipole determination)
- Measure field integrals while ramping (dynamic)
- Current table for main coils and correction coils

Instrumentation:

- Translational stages
- Current source
- Two-axis laser micrometer

20.04.2021 Superconducting Undulators for Advanced Light Sources

12

Andreas Grau - Magnetic Measurement Systems for Superconducting Insertion Devices

Measurement systems for devices in final cryostats (II)

Stretched vibrating wire, resonant method (field integrals I1 and I2)

Measurement method based on powering tensioned wire at resonant frequencies of the wires natural vibrations (1st and 2nd harmonics) and its interaction with the magnetic field.

- Method very effective for minimizing field integrals
- Measure field integrals at any field level (static, minimization, multipole determination) •
- Complementing stretched wire measurement with direct current technique 0
- Instrumentation: Translational stages, frequency generator, two-axis laser micrometer •

- p linear density of the wire
- E wire E-module

$$J_0$$
 - current amplitude in the wire

$$x_{0n}$$
 - wire amplitude of oscillations

- $I_{w} = \pi d^{4}/64$ (d-wire diameter)
- δ- damping decrement

$$b_n = \sqrt{\frac{2}{L}} \int_0^L B(s) \sin(k_n s) \, ds$$

Maximal wire amplitude

$$x_{0n} \approx \frac{J_0 * b_n}{2 \; \omega_{nres} \; \delta \; \rho}$$

 $k_n = n\pi/L$ Wave vector n-harmonic

Courtesy of N. Mezentsev, BINP

Andreas Grau - Magnetic Measurement Systems for Superconducting Insertion Devices

KIT - Institute for Beam Physics and Technology

Magnet field Fourier component

$$x_{0n} \approx \frac{y_0}{2 \omega_{nres} \delta \rho}$$

$$\omega_n = \sqrt{\frac{T}{\rho} \cdot k_n^2 \cdot \left(1 + \frac{E I_w}{T} k_n^2\right) - \delta^2}$$

Measurement systems for devices in final cryostats (III)

Local magnetic field measurements

- Warm bore guide tube adapted from BINP by C. Doose
- Titanium guide tube is tensioned to reduce sag
- Atmospheric pressure
- Heated to room temperature with current
- Translated horizontally using stages on the cryostat
- SENIS integrated 3-axis Hall probe mounted inside a carbon fiber tube and scanned through the device using the 3.5 m linear stage
- Instrumentation: Translational stages, current sources (heating and Hall samples) voltage DAQ system

Courtesy of M. Kasa, ANL

Andreas Grau - Magnetic Measurement Systems for Superconducting Insertion Devices

Measurement systems for devices in final cryostats (IV)

Upstream end rotating stage with ceramic pin to define coil width and position

Instrumentation:

- Translational stages
- Rotational stages
- Encoders
- DAQ device (Volts, Nanovolts)
- Ampilifier (evtl.)

Rotating coil (field integrals I1 and I2)

- One turn integral coil
- Coil width 4 mm
- Mounting via ceramic pins (Ø4 mm)
- Different coil configurations possible
- Supported and tensioned at each undulator end

Down-stream end rotating stage with ceramic pin and brass tensioning fixture

Courtesy of M. Kasa, ANL

Andreas Grau - Magnetic Measurement Systems for Superconducting Insertion Devices

Measurement systems for devices in final cryostats (V)

Pulsed wire (field integrals I1, I2 and local field distribution)

Interaction of pulses through a tensioned wire with the magnetic field distribution due to Lorenz force (R. Warren, Nucl. Instr. and Meth., 1988)

- Wire CuBe, AlSi or W (~100 μm)
- Pulse current ~1 A
- Pulse length (10μ s 20ms) and shape leads to I1(x), I2(x) or B(x)
- Wire vibrations are proportional to magnetic field integrals
- Signal of travelling wave (speed ~200 300m/s) measured by laser/photo diode and recorded with oscilloscope
 Instrumentation:
- Characterization of small bore magnets (field integrals, magnetic center, alignment)

for Advanced Light Sources

Laser Photo diode B(x): magnetic field • Current - voltage converter (measurement signal), amplifier Digital storage oscilloscope 2 ∫B(x) dx: angle Magnet Laser wire B(x) dx dx': trajectory 3 Photodiode Courtesy of M. Kasa, ANL 16 Superconducting Undulators Andreas Grau - Magnetic Measurement Systems for 20.04.2021 KIT - Institute for Beam Physics and Technology

Superconducting Insertion Devices

Translational stages (wire alignment)

• Pulse generator, power supply, amplifier (pulse)

Measurement techniques pros & cons

Hall probe measurements	Established, direct access to magnetic field, calculation of field integrals, direct position determination with laser interferometer, Zero- Gauss chamber (offset reduction), in-vacuum	 Calibration error <0,1 mT (offset), LT Scanning length affects integral calc. Positioning Sensor dimensions (for small bore, PCB?)
Moving stretched wire	Established, direct access to values for I1 and I2, ~10 ⁻⁶ Tm/Tm², small bore, low/room temperature, in-vacuum	 Small signal (nV) Signal to noise ratio (Lock-in technique ?)
Stretched wire, constant current	Established, access to I1 and I2, dynamic measurements during ramping, fast measurement method, low/room temperature, vacuum, small bore	 I1, I2 ~10⁻⁴ Tm/Tm² Depends on accuracy of two-axis micrometer Signal to noise ratio
Vibrating stretched wire	Effective for zeroing for field integrals, more sensitive than constant current method	 Receive field integrals from Fourier analysis measurement signal Good calibration not easy
Rotating coil	Established, direct access to I1 and I2, static and dynamic measurements, low/room temperature, in-vacuum	 Minimum dimension (≥ 4 mm) Low temperature with antechamber In-vacuum Tensioning & sag, spatial resolution
Pulsed wire	Access to I1 and I2 and B, fast measurement method, feedback during tuning, alignment, magnetic centering, measure multiple magnetic structures along the wire, in-vacuum, small bore	 Data processing needed, eliminate dispersion and pulse effects Short pulse length, poor signal Artefacts due to Eigenmodes, vibrations
17 20.04.2021 Superconducting Undulators Andreas Grau - Magnetic Measurement Systems for KIT - Institute for Beam Physics and Technology		

Superconducting Insertion Devices

for Advanced Light Sources

18 20.04.2021 Superconducting Undulators for Advanced Light Sources

Andreas Grau - Magnetic Measurement Systems for Superconducting Insertion Devices

Andreas Grau - Magnetic Measurement Systems for Superconducting Insertion Devices