

Correction Schemes for Superconducting Undulators

D. Arbelaez, S. Prestemon Lawrence Berkeley National Laboratory

4/20/21

Introduction

- Planar superconducting undulators commonly require global and local field correction
 - Global field can be present in undulators with iron yoke
 - Local corrections are usually required at the ends
- Local (periodic) errors can be well controlled by precise machining / fabrication of parts but some methods exist for local correction if specifications are difficult to meet
- Overall control of the mechanical structure (undulator gap) is also critical to obtaining low phase error
 LBNL 1.5 m Nb₃Sn Undulator from LCLS-II R&D Program

D. Arbelaez, et al., International Committee for Future Accelerators, Beam Dynamics Newsletter No. 78. 2019

Several examples are shown from LBNL Nb₃Sn SCU Design and testing for 19 mm period undulator with 8.0 mm gap

Office of

Science

Outline

- Basic end design considerations for planar SCUs
 - Saturation effects
 - Local vs. global effects
- End correction schemes
- Local (periodic) correction schemes
- Gap corrections
- Conclusions

Basic End Design Kicks (ideal)

of coil turns is given by the difference in neighboring pole potentials

End Design Including Local End Errors

- Kick and displacement errors at the ends due to non-ideal effects
- Even or Odd number of poles
 - Even zero net steering, non-zero net displacement
 - **o** Odd zero net displacement, non-zero net steering

5

Undulator Pole/Core Saturation

- Saturation of the undulator core and poles leads to non-ideal effects
 - Pole saturation changes the local kick strength
 - Pole and core saturation leads to non-ideal global effects

- 2D calculations are shown to demonstrate the principles
- For accurate results 3D calculation must be used

Office of Science

Global Field Effects

Global field effects are present due to saturation

Global Field Effects Can Scale Unfavorably With Undulator Length

- Magnetic field was calculated with two different length undulators (second one is twice as long) with odd symmetry
- The effect of the end coil corrector is shown

Office of Science

BERKELEY L

- Slope of the distributed field scales approximately with 1/L
- Second field integral scales with slope $L^3 \approx L^2$

End Correction Schemes

of coil turns:

1/8, 1/2, 7/8, 1

- Less turns in the pockets at the ends of the undulator
- Corrector coils can be wound in the main coil pockets at the ends
- External dipole kick corrector is usually required since local and global errors may be coupled for co-wound correctors

Y. Ivanyushenkov et al., Phys. Rev. AB. 20, 100701 (2017)

LBNL Nb₃Sn Undulator Example

Example of End Design Approach for LBNL Nb₃Sn Undulator

2 Independent Correctors

• Correction of global field effects

Office of Science

- 1 corrector (coil at each end wired in series) is used for correction of the global field effect
- $\circ~$ corrector produces both a local kick and a global field
- Correction of local end kick
 - 1 corrector at each end wired independently for entrance and exit kick correction
 - $\circ~$ This correction is decoupled from the main core and produces no global fields
 - Field clamps are included for this corrector in order to avoid interference with nearby magnetic components

Global Field Correction

- Coils are wound in first and last pocket of each core
- Produces a global correction + local kick

Office of Science

Strength is chosen to cancel only global field error

Local End Kick Correction

- Magnetically decoupled from main undulator core
- Produces only local kicks
- Field clamps are used to minimize stray field
- Compact design (fits under splice joint in Nb₃Sn device)

Measurement Results for End Correctors for LBNL Nb₃Sn Undulator

- Co-wound corrector produces global field when powered
 - Field decreases towards the center of the undulator due to high reluctance path
 - Hysteresis is present and pre-cycle has to be performed to avoid strong second field integral errors
- Kick corrector produces local response and is well decoupled from the undulator

Office of

Science

BC

End Corrector Field Integral

13

Local Correction Schemes

- Induction shimming (demonstrated on short undulator) ۲
- Addition of iron pieces in core pockets ۰
- Small coil loops around poles
- **Current loops on vacuum chamber**

Wire Loops Around the Poles

S. Prestemon et al., IEEE TRANS. APPL. SUPERCOND., VOL. 15, NO. 2, JUNE 2005

DEPARTMENT OF Office of Science

Induction Shimming Concept

Additional Iron Pieces Concept

S Chunjarean et al., Supercond. Sci. Technol. 24 (2011) 055013

e-beam

Switch-Based Tuning Concept

• One superconducting path - with heater

Science

- One resistive path (low resistance)
- When heater is on the superconducting path becomes resistive (high resistance)

Current path via lithography on YBCO Tapes

- Commercial tape from SuperPower Inc.
- Masks designed for photolithography process
- Chemical etching used to remove Copper, Silver, and YBCO layers where desired
- Solderable thin film heaters were developed for efficient and reliable fabrication

Office of

Science

• Laser cutting is used to separate joint section

Full Length Layout Concept

- Correctors are placed on both sides of the vacuum chamber
- Top and bottom correctors are used together
- Drive current on each side of the vacuum chamber
 - $\,\circ\,$ Allows for loops with positive and negative orientation
 - $\circ~$ Return current line is directly below the drive current

Full Length Layout Concept

• Various configurations allow for:

BERKELEY

- $\circ\,$ Increase and decrease in the phase error without introducing a net kick
- $\circ\,$ Positive and negative net kicks without net changes in the phase
- $\,\circ\,$ Individual correctors give both a kick and phase change

Corrector Fabrication

- Process to adhere correctors to the vacuum chamber was developed using vacuum bag process
- Correctors and glue take up 0.2 mm of excess thickness

Correction Method Demonstration

- Local (periodic) correction method using HTS loops was successfully demonstrated
- Independent correction of net phase and trajectory errors was demonstrated
- Correction strength was still sufficient to reduce phase error from 9.2° to 5.4°
 - $\circ \quad \mbox{Due to fabrication issues correctors were only placed on one side of the vacuum chamber (1/2 strength)}$
- Local increase in vacuum chamber temperature did not affect the undulator

Office of

Science

D. Arbelaez et al., Synchrotron Radiation News **31**(3), 9–13 (2018)

Phase Error Correction by Gap Adjustment

- Phase errors can be reduced by mechanical adjustment of the undulator gap
- Method was developed and successfully implemented at APS

$$\Delta P(z_p) = 360^\circ \frac{K^2}{\lambda_u \left(1 + K^2/2\right)} \frac{1}{B_0} \frac{dB}{dg} \int_{z_0}^{z_p} \delta g(z) dz$$

Simulated Effect of Gap Correction for LBNL Nb₃Sn Undulator

Office of

Science

Gap Adjustment Mechanism for APS Undulator

J. Bahrdt, E. Gluskin, Nuclear Inst. and Methods in Physics Research, A 907 (2018) 149–168

Conclusions

- Analysis shows the need for local and global correction
- End corrections can be performed using co-wound and independent kick correctors
- Local (periodic) correction scheme has been developed using HTS loop coils and heater switches
- Precise fabrication and assembly process is essential to obtaining low magnetic field errors

Acknowledgements

• LBNL

- S. Prestemon, R. Schlueter, D. Dietderich, H. Pan, S. Myers, M. Morsch, T. Seyler, T. Lipton, J. Swanson, R. Oort
- LCLS-II R&D Collaboration
 - ANL: E. Gluskin, Y. Ivanyushenkov, I. Kesgin, M. Kasa, C. Doose, J. Fuerst, Q. Hasse
 - o SLAC: P. Emma

