
podio I/O re-design

Some diagrams and thoughts

(Very) high-level overview

Event

Event

Input
System

Output
System

• “Thread safe by default” (Assuming one event per thread!)

Users do not need to worry about threads at all, Event is fully self-contained

• Potentially thread safe

Up to the implementation to do necessary internal synchronization
Potential to have some of this in the “thread safe by default” category

DESYª | podio I/O re-design | | Page 2

*

* not necessarily user class

Event

DESYª | podio I/O re-design | | Page 3

Event
Requirements

• The “Event” is not necessarily a user facing class!

In framework usage it could also just be a simple container of collections (or possibly
even just something that acts like this)

• If it is a user facing class it gives access to the collections and manages their
“access rights” and resources

Getting already stored collections
Storing new collections
A “mini framework” could potentially built around this class, where it is (to first order)
the only thing that needs to be passed around

• Access to metadata

Definitely for event-level metadata
Also for run metadata and collection metadata?

DESYª | podio I/O re-design | | Page 4

Event Interface
Conceptually
struct Event {
// get a collection via an id
template<class CollectionT, class IdT>
CollectionT const& get(IdT id) const;

// put a collection into the event
template<class CollectionT, class IdT>
void put(CollectionT&& coll, IdT id);

// create a new, empty collection
template<class CollectionT, class IdT>
CollectionT& create(IdT id);

// ... more convenience functionality
};

• Event owns all the collections / data

• Access only const references to already
stored collections

• putting a collection into the Event makes it
“invalid” for further outside usage.

At compile time enforce that the calling
site reflects this, e.g.
event.put(std::move(collection))1

• Only create gives access to a new, empty
and mutable collection

1Potentially make collections a move only type?

NOTE: IdT is a placeholder for any type that can be used for uniquely identifying a collection.

DESYª | podio I/O re-design | | Page 5

Event Interface
Some concrete questions

• Support different policies for adding / creating collections?

E.g. only possible to put or create collections with a pre-defined (registered) set of ids?
Essentially a restriction imposed on the event by the output system.
Compile time enforcement possible? What is the earliest point we can fail in case of a
mismatch at runtime?

• Define an abstract IEvent interface that can be implemented by different event classes?

Makes certain compile time checks impossible
Unified user interface, independent of the details of the actually used event without
having to template functions
Would allow to hide a lot of implementation details

• How to best enforce “invalidation” of collections that are put into the event?

• Event level metadata? Metadata implementation in general.

• ...
DESYª | podio I/O re-design | | Page 6

Input System

DESYª | podio I/O re-design | | Page 7

Input System
Requirements

• Support in principle arbitrary I(/O) backends

root, sio, generator files?, ...

• Support reading from different sources “simultaneously” and combining them into events

Pile-up mixing, background overlay, ...

• Schema evolution when reading files using a different version of the EDM

• Potentially produce different user facing Event classes

lazily (self-)unpacking, ...

• Make as much as possible thread safe

Do not foresee multithreaded access to a single file, but potentially read several files in
different threads?

Which are the ones we need/want to support for standalone podio? Which are better left for
frameworks?
DESYª | podio I/O re-design | | Page 8

Input System
General remarks

• “Unpacking” comprises several steps in the following even if they are ideally more or less
free-standing, re-entrant functions that are just applied one after the other

Decompressing raw input data blobs / buffers
Schema evolution either on decompressed raw buffers or on final data types
Building and preparing collections from the decompressed buffers

• Ownership is always with the component where the data (in any form) currently resides

“Dataflow” programming (sort of)
If a framework wants to re-use Event slots, this can be achieved, e.g. by providing a
dedicated Unpacker that can fill pre-allocated Events instead of allocating / creating
new ones

• Ideally once the reader has read all necessary data for a given event, the rest of the chain
can be run on several events simultaneously (and independently)

• “Non File Input” refers, e.g. to pre-mixing library / catalogue

DESYª | podio I/O re-design | | Page 9

Input System
Different approaches possible

U
np
ac
k

Co
m
bi
ne

Non
File
Input

RawData
Provider

Files File
Reader

Event

Co
m
bi
ne

Event

Non
File
Input

RawData
Provider

Files File
Reader

Unpack

Unpack

Non
File
Input

Files

Combined
Reader

Unpack Event

DESYª | podio I/O re-design | | Page 10

Variant 1

U
np
ac
k

Co
m
bi
ne

Non
File
Input

RawData
Provider

Files File
Reader

Event

• Readers provide arbitrary data format and unpacker
that knows how to unpack its data

• Different options for combining events

1. unpack, 2. combine (almost) final collections
1. combine data blobs, 2. unpack (on demand?)
Until a collection is unpacked it has to know how
it can be unpacked!

• Can be very flexible approach that can handle new readers and arbitrary numbers of input
sources

• Can get away with one synchronization point when combining the different sources into
one self contained “Event”

• Threading all the necessary information through the combination step is probably the
hardest part

DESYª | podio I/O re-design | | Page 11

Variant 2

Co
m
bi
ne

Event

Non
File
Input

RawData
Provider

Files File
Reader

Unpack

Unpack

• Readers provide arbitrary data format and
unpacker that immediately unpacks this
data

• Combination is done on (almost) final
collections

• Similar to Variant 1 with unpacking before
combination

• Can be flexible approach that can handle new readers and arbitrary numbers of input
sources

• Parallelization before combination could be achieved by having each reader + unpacker on
its own thread

• Only combination would need explicit synchronization

• No lazy unpacking possible (major conceptual difference to Variant 1)

DESYª | podio I/O re-design | | Page 12

Variant 3

Non
File
Input

Files

Combined
Reader

Unpack Event

• Reader reads from several sources and

provides a fully combined arbitrary

data blob and a way to unpack it

• Unpacking can be done immediately or

lazily on demand

• Easiest approach from combination

point of view

• Rather inflexible. Potentially each combination of input sources would need a dedicated
reader

• Readers become very large as they have to potentially hold a lot of state

• Lazy unpacking would be rather easy to implement on top of this, since the reader can
normalize the different input source raw data formats

DESYª | podio I/O re-design | | Page 13

Input System
Orchestration

• Not yet addressed orchestration of all the components

• Orchestration really should just be orchestration and not having to deal with anything else
rather than controlling that the data flow from / to the different components is as
expected (important for framework use cases)

• Preference to have the components work standalone independently of how they are
orchestrated (as long as that is done correctly)

E.g. Simply chaining all the things in a single threaded application should work with the
same components as having them consume from / produce to different queues (or any
other means of flow control)
Incidentally also allows for easier testing and benchmarking

• User access to input system will be provided by this orchestration layer

EventQueue / EventStore in standalone mode
Framework probably already has a dedicated way

DESYª | podio I/O re-design | | Page 14

Output System

DESYª | podio I/O re-design | | Page 15

Output System
Requirements

• Write to several different output files

Different contents (subset of all available content)
Different formats (different (I/)O backends)

• Transform from structured format to POD-buffers (“packing”), potentially compressing
them before writing

• Allow for asynchronous operation wrt the rest of the event processing

• Also responsible for eventually “cleaning-up” the Event that is passed in

Free all resources
Hand back to framework after producing a valid “empty” slot state in case of slot
re-usage

• Intermediate writing?

Equivalent results can be achieved with filtering and writing at the end

DESYª | podio I/O re-design | | Page 16

Output System
Requirements (ctd.)

• No access to the same file from multiple threads, but potentially have multipe

threads handle multiple files

• Potentially has to handle different Event classes

Might have the same interface (IEvent) - should facilitate things
Differences at writing end probably smaller than at reading end

DESYª | podio I/O re-design | | Page 17

Output System
General Remarks

• “Packing” refers to collecting all the collection data into POD buffers and potentially
additionally compressing them

Ideally free-standing, re-entrant functions, that leave their input untouched
Produce newly allocated buffers, for which ownership is handed over to the writer after
returning (?)

• The writer only frees the resources of the “packed” data it writes

• The cleanup of the Event is left to a dedicated component

By default completely frees all resources
In framework usage can also just clear internal buffers and return an “empty” Event
back to the arena

• Filter components can be held very general, doesn’t alter the Event at all and basically just
returns a list of booleans, one per collection to indicate whether to write this collection or
not

Maybe invoke on collections individually and decide on collection-by-collection basis
instead of “event-level” (?)

DESYª | podio I/O re-design | | Page 18

Output System
Different approaches possible

Event

"S
pl
it
te
r"

Filter

Filter

Pack

Pack

Writer

Writer

Cleanup

Event Combined
Filter

Combined
Packing

"S
pl
it
te
r"

Writer

Writer

Cleanup

DESYª | podio I/O re-design | | Page 19

Variant 1

Event

"S
pl
it
te
r"

Filter

Filter

Pack

Pack

Writer

Writer

Cleanup

• Each “writer chain” operates on the
complete Event

• Filtering to only include the desired
collections before packing (and
compressing) them before writing them to
file

• Event is cleaned up once all chains have finished

• “Splitter” essentially an intermediate orchestration component that launches the writer
chains (can in principle act as the “Input Queue” to the Output system)

Individual threads, async tasks, working through the list in one thread, ...
Invokes cleanup at the end?

• Easy to extend approach, but some work can be duplicated

E.g. some collections will be packed twice, if they are written to file by two chains
DESYª | podio I/O re-design | | Page 20

Variant 2

Event Combined
Filter

Combined
Packing

"S
pl
it
te
r"

Writer

Writer

Cleanup

• In a first step only the desired collections
are packed

Possible that one collection is packed in
several different ways if written into
different formats

• Packed collections are passed to “Splitter” which distributes them to different writers and
also controls cleanup of the whole Event in the end

Needs to distribute the correct data to the corresponding writer

• This approach can avoid packing the same collection multiple times

• Writers need to register their filter and packing function to the combined filter / packer

• Slightly less opportunity for running on multiple threads, but overall possibly less work

DESYª | podio I/O re-design | | Page 21

Output System
Orchestration

• The previous variants only partially address the orchestration of the components

• Components should work independently of the orchestration

• Orchestration just ties them together in the correct order and ensures the proper data flow

• User access through the orchestration layer

Possible for all the configuration, e.g. filtering?

DESYª | podio I/O re-design | | Page 22

A few final remarks

DESYª | podio I/O re-design | | Page 23

My preferences and final thoughts

• This overview / first shot probably misses a lot of the details that make the
implementation hard in the end

Should help to define the goals of the design (also non-goals)

• I think that for both Input and Output System Variant 1 is currently the most promising

Most flexible for Input System
Probably easiest to implement for Output System (even if work is potentially duplicated)

• I personally prefer composition at compile time over composition at runtime

Allows for checking compatibility very early
Potentially more efficient

• It might be necessary to also define an abstract interface for the Input / Output system

• “Copying” a subset of all collections from one file to another without fully unpacking
events, should in principle be possible with custom unpacker / packer pairs

Might need to define an explicit “intermediate raw data container” format
DESYª | podio I/O re-design | | Page 24

