

SPONSORED BY THE

Deutsche Forschungsgemeinschaft

SFB 676 - Project B2

SUSY Parameter and Mass Determination at the LHC

C. Sander, *Hamburg University*

Cambridge Phenomenology Seminar - 25th February 10

Example: Search for Underlying Theory

Do stars in particular sky regions belong to a constellation?

This is what astrologists -of our culture- agreed on!

Example: Search for Underlying Theory

Including noise, pile-up, underlying event ...

Example: Search for Underlying Theory

Including noise, pile-up, underlying event ... it is possible to find everything in the sky!

Introduction

Part I: Review of sensitive observables at the LHC

- Kinematic end-points, mass edges, thresholds ...
- m_T , m_T , Kinks ...
- Weak boson and top production rates
- Invariant multi jet masses

Part II: SUSY mass determination using kinematic fits

- Global fits
- Event reconstruction methods:
 - Hybrid method
 - Multi event method
 - Single event method
 - Kinematic method

Summary

Introduction: Supersymmetry

- Last possible symmetry: between fermions and bosons
- Each SM particle gets a SUSY partner equal in all quantum numbers except for spin $(\pm \frac{1}{2})$
 - → Opposite sign of loop corrections solve fine tuning problem
 - → New particles change slope of running couplings → gauge unification
 - \rightarrow Graviton $(s=2) \leftrightarrow g/W/Z/\gamma$ (s=1)
 - → Provides perfect DM candidate
 - → "Natural" EWSBreaking
- No candidates for supersymmetric partners discovered so far
 - → SUSY has to be broken, but sparticles should have masses of ~1 TeV to keep advantages of SUSY

cancellation of loop corrections:

unification of gauge couplings:

Current Status: SUSY Searches

Hadronic searches:

- Best limits from CDF and DØ
- Within mSUGRA: $m_{\tilde{g}} \gtrsim 300 \; {\rm GeV}$ $m_{\tilde{g}} \gtrsim 400 \; {\rm GeV}$

Leptonic searches:

- Best limits on SUSY masses from Tevatron and LEP experiments
- "Golden channel at Tevatron"

$$q\bar{q} \rightarrow \chi_1^{\pm} \chi_2^0 \rightarrow 3l + E_T$$

Typical SUSY Signature

- *R*-parity conserved:
- SUSY particles are produced in pairs
- Cascade decay down to stable LSP
 - \bullet E_T
 - large number of jets/leptons
 - jet/lepton pairs compatible with weak gauge boson masses
 - ...
- Fully hadronic decay mode has large branching ratio

Two goals:

- (1) Discover SUSY at the LHC
- (2) Determine model parameters of underlying theory

Part I

Review of sensitive observables at the LHC

Observables

Pre-LHC era:

- Electroweak precision data (*LEP/SLAC*)
- Anomalous magnetic moment of muon (BNL)
- Rare decays (*B-factories*, *Tevatron*)
- Relic density constraints from astrophysical experiments (WMAP + SNIa + ...)
- Higgs, SUSY, and ... mass limits (*Tevatron*, *HERA*, *LEP*)

LHC (+ILC) era:

• Kinematic end-points, kinks, ...

LHC inverse problem: Inverse map of observables to parameter space shows many degeneracies. Roughly spoken: Too less constraints for the large number of unknowns!

Arkani-Hamed, Kane, Thaler & Wang 05

Needed: New observables providing additional information

- Branching ratios
- Invariant multi-jet masses, ...

Kinematic End-Points

Process:

 q_1

 Unmeasured LSP → no peak in invariant mass distributions but endpoints, thresholds ...

 Background (SUSY and SM) can be suppressed by OSOF (opposite sign, opposite flavor) subtraction

 Accurate reproduction of theoretical expected di-lepton edge:

 $(m_{ll}^{2})^{\text{edge}} = \frac{\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{r}}^{2}} = 77\text{GeV} \tilde{q}_{L}$

m_" (GeV)

OSOS subtraction

Gjelsten, Hisano, Kawagoe, Lytken, Miller, Nojiri, Osland & Polesello (in LHC/IC study group) 04

Kinematic End-Points

- "Min"/"Max" w.r.t. choice of lepton
- $m(qll)^{\rm tres}$ refers to threshold of subset, where angle of two leptons in slepton rest frame exceeds $\pi/2$

Edge	Nominal Value	Fit Value	Syst. Error	Statistical
			Energy Scale	Error
$m(ll)^{\text{edge}}$	77.077	77.024	0.08	0.05
$m(qll)^{\mathrm{edge}}$	431.1	431.3	4.3	2.4
$m(ql)_{\min}^{\mathrm{edge}}$	302.1	300.8	3.0	1.5
$m(ql)_{\rm max}^{\rm edge}$	380.3	379.4	3.8	1.8
$m(qll)^{\rm thres}$	203.0	204.6	2.0	2.8
$m(bll)^{\text{thres}}$	183.1	181.1	1.8	6.3

All plots: OSOF subtracted

Transverse Mass M_T

Reminder: W-mass measurement at hadron collider (unknown longitudinal v

momentum component)

$$(p_{\mu} + p_{\nu})^2 = m_W^2$$

$$p_{\mu}^2 + p_{\nu}^2 + 2p_{\mu}p_{\nu} = m_W^2$$

$$2\left(E_T^{\mu}E_T^{\nu}\cosh\Delta y - \mathbf{p}_T^{\mu}\cdot\mathbf{p}_T^{\nu}\right) = m_W^2 \quad \text{with} \quad m_{\nu} = 0 \approx m_{\mu}$$

$$M_T^2 = 2\left(E_T^{\mu}E_T - \mathbf{p}_T^{\mu}\cdot\mathbf{p}_T\right) \leq m_W^2 \quad \text{with} \quad E_T = \mathbf{p}_T$$

Question: Similar definition for more than one massive escaping particles, e.g. LSP?

For arbitrary momenta:

$$m_{\tilde{l}}^2 = m_l^2 + m_{\tilde{\chi}}^2 + 2(E_T^l E_T^{\tilde{\chi}} \cosh \Delta \eta - \mathbf{p}_T^l \cdot \mathbf{p}_T^{\tilde{\chi}})$$

since $\cosh \Delta \eta \leq 1$

$$m_{\tilde{l}}^2 \ge m_T^2(\mathbf{p}_T^l, \mathbf{p}_T^{\tilde{\chi}}) = m_l^2 + m_{\tilde{\chi}}^2 + 2(E_T^l E_T^{\tilde{\chi}} - \mathbf{p}_T^l \cdot \mathbf{p}_T^{\tilde{\chi}})$$

Not usable, since both neutralinos contribute to E_T

$$\not\!\!E_T = \mathbf{p}_T^{\tilde{\chi_a}} + \mathbf{p}_T^{\tilde{\chi_b}}$$

If both LSP momenta are known

$$m_{\tilde{l}}^2 \ge \max\{m_T^2(\mathbf{p}_T^{l^-}, \mathbf{p}_T^{\tilde{\chi_a}}), m_T^2(\mathbf{p}_T^{l^+}, \mathbf{p}_T^{\tilde{\chi_b}})\}$$

Since splitting not known, the best one can do is:

$$m_{\tilde{l}}^2 \ge M_{T2}^2 = \min_{\mathbf{p}^{\prime a} + \mathbf{p}^{\prime b} = \mathbf{p}_T} \{ \max\{ m_T^2(\mathbf{p}_T^{l^-}, \mathbf{p}_T^{a}), m_T^2(\mathbf{p}_T^{l^+}, \mathbf{p}_T^{b}) \} \}$$

Useful, if enough events populate region near end-point

Lester & Summers 99

Kinks

• LSP mass $m_{\tilde{\chi}}$ needs to be input for M_{T2} ; can it be determined from data?

$$m_{\tilde{l}}^2 \ge M_{T2}(m_{\tilde{\chi}})^2 = \min_{\mathbf{p}^a + \mathbf{p}^b = \mathbf{p}_T} \{ \max\{m_T^2(\mathbf{p}_T^{l^-}, \mathbf{p}_T^a; m_{\tilde{\chi}}), m_T^2(\mathbf{p}_T^{l^+}, \mathbf{p}_T^b; m_{\tilde{\chi}}) \} \}$$

- ullet Per definition M_{T2} is montonically increasing as function of $\,m_{ ilde{\chi}}$
- If event set has enough variety:
 - ightharpoonup kink of $M_{T2}^{\mathrm{max}}(m_{\tilde{\chi}})$ at true masses
- Simple explanation of kink:
 - $M_{T2} ext{-bound}$ $M_{T2}(m_{\tilde{\chi}}^{ ext{true}}) \leq m_{\tilde{l}}$
 - But $M_{\rm T2}$ -curve have different slopes for different kinematic configurations

Cho, Choi, Kim & Park 07,08,09

Two origins kinks:

Details in: Cho, Choi, Kim & Park arXiv:0709.0288 & arXiv.0909.4853

- (A) N(>2)-body decays, e.g. $\tilde{g} \rightarrow qq\tilde{\chi}_1^0$
 - Extreme momentum configurations \rightarrow different slopes of $M_{T2}(m_{\tilde{\chi}}^{\rm true})$
 - ullet No such kink for $\,\widetilde{l}
 ightarrow l ilde{\chi}^0_1 \,$

- (B) Boost dependence, e.g. $\tilde{l} \to l \tilde{\chi}_1^0$
 - boosted parents
 - and/or ISR

W/Z Boson Identification

- Jet algorithm: iterative cone 0.5
- Jet cuts $p_T>20~{
 m GeV}$ and $|\eta|<2.5$
- Candidates: dijets with

$$70 \text{ GeV} < M_{\text{inv}} < 110 \text{ GeV}$$

Large combinatorial background

Reconstruction efficiency:

- Low efficiency at small boson $p_{\scriptscriptstyle T}$ due to small jet reconstruction efficiency
- Low efficiency at large boson $p_{\scriptscriptstyle T}$ due to jet merging

Friederike Nowak

Supression of Combinatorial Bg

Discriminating variables:

- θ^* : angle (in the W rest frame) between a W jet and the flight direction
- p_T of W candidate
- Angle between $ot\!\!E_T$ and W candidate
- → Reduction of combinatorial background by factor up to ~3
- If W candidate can be combined with third jet to $m_{to} \rightarrow top$ candidate

Constrain Parameter Space

+ information about W/Z and top candidates

- Scan hypothesis and compare (χ^2 test) with pseudo data (here: $m_0 = 800 \text{ GeV}$ and $m_{10} = 600 \text{ GeV}$)
- Boson candidate rate contains information in addition to absolute event rate → larger parts of the parameter space can be excluded

Reconstruction of Mass Edges

Search for other discriminating variables:

 Hadronic decay of squarks: invariant trijet mass distribution

 No sharp peak but upper and lower mass edge (due to unmeasured LSPs)

 Non-degenerated squark mass spectra: define only 1. and 2. generation as signal

Ulla Gebbert

Trijet candidates:

- $W\!/\!Z$ candidate combined with one of two $p_{\scriptscriptstyle T}$ hardest jets (large mass gap between \tilde{q} and $\tilde{\chi}^\pm$)
- Up to 20 combinations per event
- Start with small S/B of ~1/100

Reconstruction of Mass Edges

- Select out of 17 kinematic variables up to 5 best separating and least correlated variables
- Use likelihood ratio method to separate signal from background
- Improve S/B from ~1/100 to ~1/10
- Background might be "signal like"

Constrain Parameter Space

- Scan over hypotheses
- Compare with pseudo data (here: $m_0 = 600$ GeV and $m_{12} = 400$ GeV) via binned maximum Likelihood (hypotheses normalized to data)
- Shape of trijet mass distribution provides enough information to constrain the parameter space

Part II

Susy Mass/Parameter Determination

Global Fits

Observables:

Electroweak Precision Data LHC (+ Tevatron/LEP/ILC) Cosmology Rare Decays ...

Model Parameters:

SM Parameters mSUGRA / GMSB / MSSM

. . .

In particular, if realized model is not known

- Number of independent observables limited → not possible to fit most general models, e.g. MSSM (>100 parameter)
- "Coverage" of multidimensional parameter space → high computational cost
- Discrimination between models
- Systematic uncertainties (common or individual)
- In case of end-points: chain ambiguities
- •

Global Fits - Present Picture

- Very active research field: Fittino, SFitter, GFitter, MasterCode, Baltz et al., Allanach et, al., Baer et al., de Boer et al. ... and many more
- As examples: Mastercode and Fittino (pre-LHC observables only)
 - Results compatible
 - Present best fit within reach of LHC
 - But: Upper limits driven by Δa_{μ}

Buchmüller, Cavanaugh, De Roeck, Ellis, Flächer, Heinemeyer, Isidori, Olive, Ronga & Weiglein 09

Event Reconstruction

Reconstruction of full kinematics of SUSY events → access to masses

- For one event: In general more unknowns (LSP momenta, SUSY masses) than constraints (p_T balance, invariant masses)
- For a set of events: some unknowns (SUSY masses) are common → problem can be over-constrained
- Possible approaches:
 - **Hybrid method:** combine kinematic end-point measurements and event-wise reconstruction quality
 - Multi-event method: Choose number of events such, that number of unknowns equals number of constraints → look at parameter space covered by "real solutions"
 - Single-event method: Scan over common unknowns and reconstruct each event; use some measure (like unused constraints) for goodness of fit
 - ... + kinematic fit (our approach): Constrained least square fit of many events taking into account uncertainties of measurements

Hybrid Method

Event topology:

e.g.
$$\tilde{q} \to q \tilde{\chi}_2^0 \to q l \tilde{l} \to q l \bar{l} \tilde{\chi}_1^0$$

- Z = Z', Y = Y', X = X': Intermediate heavy particles
- 1 = N = N' = 2: Stable WIMP
- 7, 5, 3, 8, 6, 4: SM particles/final states (jets/leptons)

• General idea:

- Number of measured uncorrelated kinematic endpoints $c_{\rm end}$ and number of intermediate masses $n_{\rm mass}$ \rightarrow degrees of freedom for experiment-wise end-point fit $d_{\rm end} = n_{\rm mass}$ $c_{\rm end}$ \rightarrow Use event wise information to improve mass resolution
- Requirement: number of kinematic constraints $c_{\rm ext}$ larger than number of unknown momentum components per event $n_{\rm mm}$

Nojiri, Polesello & Tovey 08

Hybrid Method

• 8 mass shell conditions: $(p_1 + p_3 + p_5 + p_7)^2 = M_Z^2 = (p_2 + p_4 + p_6 + p_8)^2$

$$(p_1 + p_3 + p_5 + p_7) = M_Z = (p_2 + p_4 + p_6 + p_8)$$
 $(p_1 + p_3 + p_5)^2 = M_Y^2 = (p_2 + p_4 + p_6)^2$
 $(p_1 + p_3)^2 = M_X^2 = (p_2 + p_4)^2$
 $(p_1)^2 = M_N^2 = (p_2)^2$

• 2 transverse momentum constraints:

$$p_1^x + p_2^x = E_{\text{miss}}^x$$
$$p_1^y + p_2^y = E_{\text{miss}}^y$$

- Overall: 10 constraints and 12 unknowns (2×4 WIMP momenta + 4 masses)
- For each M, unknown p_1 and p_2 are determined by solving system of equation from mass shell conditions, giving 2 solutions for each leg (4 combinations)
- Each event is fitted minimizing $\chi^2(M)$ with free parameters $M = (M_Z, M_Y, M_X, M_N)$ Endpoints(M) Reconstructed momenta(M)

$$\chi^2(M) = \sum_{i=1}^{c_{\text{end}}} \left(\frac{m_{\text{evt}}^{\text{end},i} - m_{\text{exp}}^{\text{end},i}}{\sigma_{m_{\text{exp}}^{\text{end},i}}} \right)^2 + \left(\frac{p_1^x + p_2^x - E_{\text{miss}}^x}{\sigma_{E_{\text{miss}}^x}} \right)^2 + \left(\frac{p_1^y + p_2^y - E_{\text{miss}}^y}{\sigma_{E_{\text{miss}}^y}} \right)^2$$

Experimental resolutions

Hybrid Method: Example

• Process: $\tilde{q} \to q \tilde{\chi}_2^0 \to q l \tilde{l} \to q l \bar{l} \tilde{\chi}_1^0$ Model: SPS1a

• Five kinematic end-points (100 fb⁻¹):

Gjelsten, Hisano, Kawagoe, Lytken, Miller, Nojiri, Osland & Polesello (in LHC/IC study group) 04

Edge	Nominal Value	Fit Value	Syst. Error	Statistical
			Energy Scale	Error
$m(ll)^{\text{edge}}$	77.077	77.024	0.08	0.05
$m(qll)^{\rm edge}$	431.1	431.3	4.3	2.4
$m(ql)_{\min}^{\mathrm{edge}}$	302.1	300.8	3.0	1.5
$m(ql)_{\rm max}^{\rm edge}$	380.3	379.4	3.8	1.8
$m(qll)^{\text{thres}}$	203.0	204.6	2.0	2.8
$m(bll)^{\rm thres}$	183.1	181.1	1.8	6.3

Selection:

- "standard" cuts: 2 Jets, 4 leptons, M_{eff} and missing E_{T}
- 2 opposite sign same flavor (OSSF) lepton pairs; if same flavor: only one of two possible pairings must give two $m(ll) < m(ll)^{\rm edge} \rightarrow {\sf allocate \ leptons \ to \ each \ leg \ of \ event}$
- Only one possible pairings of two leading jets with two OSSF lepton pairs must give two $m(llq) < m(llq)^{\rm edge} \rightarrow {\sf allocate\ jets\ to\ each\ leg\ of\ event}$
- For each leg: maximum(minimum) of two $m(lq) < m(lq)_{\min(\max)}^{\text{edge}} \rightarrow \text{ allocate leptons to}$ the near and far position in each leg of event

Hybrid Method: Results

• **Results:** each entry corresponds to $\chi^2(M)$ minimization

No inclusion of momentum balance in goodness-of-fit function (no additional information):

Narrow mass distributions, but results equivalent with end-point fit (not shown)

Inclusion of momentum balance (additional information):

Wider distributions (see plots) but mean values more accurate (~30%)

Multi-Event Method

Event topology:

e.g.
$$\tilde{q} \to q \tilde{\chi}_2^0 \to q l \tilde{l} \to q l \bar{l} \tilde{\chi}_1^0$$

- Two identical cascade decays:
 - Z = Z', Y = Y', X = X': Intermediate heavy particles
 - 1 = N = N' = 2: Stable WIMP
 - 7, 5, 3, 8, 6, 4: SM particles/final states (jets/leptons)

- Formulate constraints as linear equations of unknown momenta
- Choose number of events such, that number of unknowns equals equations
- Solve system of equation → in general more than one complex solution
- Reconstruct invariant masses from measured and reconstructed particles

Cheng, Engelhardt, Gunion, Han & McElrath 08 Cheng, Gunion, Han & McElrath 09

Multi-Event Method

- One event: 8 unknowns (2×4 WIMP momentum components) and 6 equations
 - 4 mass constraints:

$$(M_Z^2 =) (p_1 + p_3 + p_5 + p_7)^2 = (p_2 + p_4 + p_6 + p_8)^2,$$

$$(M_Y^2 =) (p_1 + p_3 + p_5)^2 = (p_2 + p_4 + p_6)^2,$$

$$(M_X^2 =) (p_1 + p_3)^2 = (p_2 + p_4)^2,$$

$$(M_N^2 =) p_1^2 = p_2^2.$$

• 2 transverse momentum constraints:

$$p_1^x + p_2^x = p_{miss}^x, \quad p_1^y + p_2^y = p_{miss}^y.$$

- Two events: +8 unknowns +10 equations = 16 equations for 16 unknowns
 - 8 mass constraints:

$$q_1^2 = q_2^2 = p_2^2,$$

$$(q_1 + q_3)^2 = (q_2 + q_4)^2 = (p_2 + p_4)^2,$$

$$(q_1 + q_3 + q_5)^2 = (q_2 + q_4 + q_6)^2 = (p_2 + p_4 + p_6)^2,$$

$$(q_1 + q_3 + q_5 + q_7)^2 = (q_2 + q_4 + q_6 + q_8)^2$$

$$= (p_2 + p_4 + p_6 + p_8)^2,$$

2 transverse momentum constraints:

$$q_1^x + q_2^x = q_{miss}^x, \quad q_1^y + q_2^y = q_{miss}^y.$$

Multi-Event Method - Results

Solution of system of equations:

- → up to 8 complex solutions
- → consider only real solutions

Results for process: $\tilde{q} \to q \tilde{\chi}_2^0 \to q l \tilde{l} \to q l \bar{l} \tilde{\chi}_1^0$

Model: SPS1a

High luminosity, signature with leptons

Good prospects for mass determination

Single-Event Method

Same event topology as before

$$(p_1 + p_2 + p_3 + p_4)^2 = M_Z^2$$
$$(p_2 + p_3 + p_4)^2 = M_Y^2$$
$$(p_3 + p_4)^2 = M_X^2$$
$$p_4^2 = M_N^2$$

• Leaving aside last equation 3 linear equations in p_{a} :

$$-2p_1 \cdot p_4 = M_Y^2 - M_Z^2 + 2p_1 \cdot p_2 + 2p_1 \cdot p_3 + m_1^2 \equiv S_1$$

$$-2p_2 \cdot p_4 = M_X^2 - M_Y^2 + 2p_2 \cdot p_3 + m_2^2 \equiv S_2$$

$$-2p_3 \cdot p_4 = M_N^2 - M_X^2 + m_3^2 \equiv S_3$$

Same for second cascade:

$$-2p_5 \cdot p_8 = M_{Y'}^2 - M_{Z'}^2 + 2p_5 \cdot p_6 + 2p_5 \cdot p_7 + m_5^2 \equiv S_5$$

$$-2p_6 \cdot p_8 = M_{X'}^2 - M_{Y'}^2 + 2p_6 \cdot p_7 + m_6^2 \equiv S_6$$

$$-2p_7 \cdot p_8 = M_{N'}^2 - M_{X'}^2 + m_7^2 \equiv S_7$$

• Transverse momentum balance: $p_4^x + p_8^x = p_{miss}^x \equiv S_4$

$$p_4^x + p_8^x = p_{\text{miss}}^x \equiv S_4$$
$$p_4^y + p_8^y = p_{\text{miss}}^y \equiv S_8$$

Webber 09

Single-Event Method

General idea:

• Scan over mass hypothesis (M_Z, M_Y, M_X, M_N) ; for each mass hypothesis solve system of 8 equations for 8 unknowns **P**

$$\mathbf{P} = (p_4^x, p_4^y, p_4^z, E_4, p_8^x, p_8^y, p_8^z, E_8)$$

$$\mathbf{AP} = \mathbf{S}$$

$$\mathbf{P} = \mathbf{A}^{-1}\mathbf{S}$$

• Measure of goodness of fit: M_N constraint (remember: not used so far)

$$\xi^2(\mathbf{M}) = \sum_n \left[(p_4^2)_n - M_N^2 \right]^2 + \sum_n \left[(p_8^2)_n - M_{N'}^2 \right]^2 \quad \text{sum over all events}$$

• Find the mass hypothesis M with smallest ξ^2 for all combinations per event

Single-Event Method - Results

- Process: $ilde{q} o q ilde{\chi}_2^0 o q l ilde{l} o q l ar{l} ilde{\chi}_1^0$ Model: SPS1a
- Advantage: each event contributes independently and additive to goodness-of-fit function
- Challenge: minimization non-trivial
- Bias: shift of determined masses (~5 GeV / ~25 GeV (squarks)) might be corrected for by MC

Kinematic Fit Method

Our approach: complete reconstruction of SUSY events using kinematic fits in combination with mass scan Autermann, Mura, CS, Schettler & Schleper 09

Advantage: Kinematic fit takes into account uncertainties of measurements

- **Potential problems:** Many jets → huge combinatorial bg (7 jets: 1260 combinations)
 - Effect of SM and SUSY backgrounds
 - Detector resolution and acceptance
 - Initial and final state radiation
 - No perfect mass degeneration
 - Width of virtual particles

For N events:

 $N \times 21$ local measurements (7 jets)

4 global unknowns (SUSY masses)

 $N \times 6$ local unknowns (2 LSPs)

 $N \times 7$ local constraints:

- p_x , p_y
- $1 \times M_{\text{shim}}$, $2 \times M_{\text{saudk}}$, $2 \times M_{\text{dargino/neutralino}}$

Over constrained for N > 4

Non-linear Constrained Fits

Method for constrained fits: Method of Lagrangian Multiplier

But: invariant mass constraints in general not linear

- → Linearization via Taylor expansion
- → Iterative solution

Problems:

- Linearization of constraints only good approximation "near" solution → if "away" from solution iterative procedure might results in too large or too small steps, or even wrong direction
- Definition of convergence criterion

Used fitting code: KinFitter

- C++ implementation ... (V. Klose and J. Sundermann)
- ... of **ABCFIT** from ALEPH collaboration (O. Buchmüller and J. B. Hansen)
- Additional modifications (step scaling and scaling of constraints)

Alt. Fitting Technique: Genetic Algorithm

- Formulation of constraints as additional χ^2 term \rightarrow "cost function"
- Interpret cost function as $\chi^2 \rightarrow$ carefully chosen errors

$$\chi_{M^2}^2 = \left(\frac{M_{\mathrm{inv}}^2(j_1,j_2,j_3) - M^2}{\sigma_{M^2}}\right)^2 \quad \text{and} \quad \chi_{p_{x/y}}^2 = \left(\frac{\sum_{\mathrm{all \ particles}} p_{x/y}}{\sigma_p}\right)^2$$

Minimize cost function: gradient, simplex, LBFGS, simulated annealing and genetic algorithm (GA)

GA: Final state 4-momenta are genome of individual; jet combination is one additional gene. Fitness function (here χ^2) defines which individual is fittest

Algorithm:

- 1) Create first generation of individuals (starting population)
- 2) Select best fitting individuals
- 3) Create new individuals by selecting randomly two parents and inherit randomly genes from either one or other parent
- 4) For each child mutate each genome with small probability
- 5) Back to step 2) until convergence

Advantage: no linearization needed \Leftrightarrow **Disadvantage:** high computational cost

Genetic Algorithm - Schematic Picture

Proof of Principle: Semi-Leptonic tar t

Counting unknowns and constraints:

- 4 jets + 1 lepton = 15 measured parameters
- 1 neutrino = 3 unmeasured parameters
- 6 constraints $(p_x, p_y, 2 \times M_W \text{ and } 2 \times M_{tp})$

- No b-tagging used
 - → 12 possible jet configurations

Event generation and detector simulation:

- Pythia6 generated events including ISR and FSR
- Each final state jet smeared according to typical jet momentum and angular resolutions at ATLAS/CMS
- Jet/lepton selection cuts: Four jets and one lepton with
 - $p_T > 20 \text{ GeV}$
 - $|\eta| < 3.0$

Proof of Principle: Semi-Leptonic $tar{t}$

Scenario:

- No bg from other processes
- Full combinatorial bg
- ISR and FSR
- Detector resolution and acceptance

Genetic algorithm:

Right jet combinations has smallest χ^2 for 75.6% events

KinFitter:

Converged for 98.0% events

Right jet combinations has smallest χ^2 for 72.9% events

→ Similar performance of both methods for neutrino resolution

Proof of Principle: Semi-Leptonic $tar{t}$

- Comparable and reasonable results for both algorithms
- Increase at lowest fit probabilities due to acceptance cuts and non-Gaussian (Breit-Wigner) tail of invariant mass distributions

SUSY Sample

- mSUGRA test point:
 - Parameters: $m_0 = 230 \; \mathrm{GeV}, m_{1/2} = 360 \; \mathrm{GeV}$ $A_0 = 0, \tan \beta = 10, \mathrm{sign} \; \mu = +$
 - Masses: $m_{\tilde{q}} \approx 810~{
 m GeV}, m_{\tilde{g}} \approx 860~{
 m GeV}$ $m_{\chi_1^\pm} \approx 273~{
 m GeV}, m_{\chi_1^0} \approx 147~{
 m GeV}$
 - Cross section at LHC: $\sigma_{\rm tot} = 7.8~{\rm pb(LO)}$
 - Branching ratios: $Br(\chi_2^0 \to h^0 \chi_1^0) \approx 85\%$ $Br(\chi_1^\pm \to W^\pm \chi_1^0) \approx 97\%$
- Pythia6 generated events including ISR and FSR

- Each final state jet smeared according to typical jet momentum and angular resolutions at ATLAS/CMS
- Jet selection cuts: 7 jets with
 - $p_T > 30 \text{ GeV}$
 - $|\eta| < 3.0$
- → Dominant background of other SUSY processes (S/B ~ 1/40)

Fit of SUSY Events with Genetic Algorithm

- No SM bg
- No SUSY bg
- Full combinatorial bg
- ISR and FSR
- Detector resolution and acceptance
- Mass hypothesis = true masses

First step: Reconstruct SUSY events with true mass hypothesis

- Reasonable resolution of unmeasured particles
- Neutralino Starting momenta: set to fulfill chargino mass constraint

Reduction Combinatorial Background

Probability Distribution

Similar probability distribution of SUSY background:

- "Signal like" cascade topologies, e.g. decays via heavier charginos or neutralinos
- Signal cascades but different squark mass (3rd generation)
- Signal cascades but one soft jet replaced by ISR jet
- Huge jet combinatorics

Fit probability distribution flat for signal (slight systematic shift toward higher probabilities due to combinatorics)

Background peaks at lower values: cut on 0.1(0.3) improves S/B from ~1/33 to ~1/11 (~1/8)

- No SM bg
- Full SUSY bg
- Full combinatorial bg
- ISR and FSR
- Detector resolution and acceptance
- Mass hypothesis = true masses

Angular Distributions

- Huge combinatorial background → Large invariant mass combinations, e.g.
- In rest frame of SUSY particles: angular distribution $\cos\theta^*$ of decay products with respect to flight direction of decaying particle should be ~isotropic (for spin 0)
- $\cos \theta^*$ for typical background 4-vector configurations are not uniformly distributed (smaller angles preferred)

→ Define new likelihood including angular information:

$$\mathcal{L} = p \cdot \prod_{k=1}^{N_{\text{decays}}} LR_k = p \cdot \prod_{k=1}^{N_{\text{decays}}} \frac{1}{C_{\text{norm}}} \frac{f_k^{\text{signal}}}{f_k^{\text{signal}} + f_k^{\text{bg}}}$$

Many decay angles in SUSY cascades

→ Use event kinematics to reduce combinatorial bg reduction

Mass Scan

- Fix gluino and neutralino mass to true values
- Vary two remaining masses (squark and chargino)

$$\log \mathcal{P} = \sum_{i=1}^{N_{\text{tot}}} \log \max(p_i, p_{\text{cut}})$$

- No SM bg
- No SUSY bg
- Full combinatorial bg
- ISR and FSR
- Detector resolution and acceptance
- Scan mass hypothesis

 Concordance between maximum likelihood and true values (bias due to non perfect momentum balance)

Jet Clustering

• Partons → PartonJets (here: AntiKt4): "one-to-one" matching for ~1/4 of events

Leptonic Cascade Fit

Event topology: $\tilde{q} \to q \tilde{\chi}_2^0 \to q l \tilde{l} \to q l \bar{l} \tilde{\chi}_1^0$

Model: SPS1a

- Toy MC:
 - 140 fb⁻¹ for LHC @14 TeV
 - Final stated smeared according to typical resolutions
- Event Selection:

N	pT [GeV]	ŋ			
Jets					
4	> 30.	< 3.5			
Leptons					
2x2 OSSF	> 10.	< 2.5			

- Efficiency: 53% (217 events, exactly this cascade)
- Background fraction: 57%

- Kinematic fit with Lagrange Multiplier
 - 6 mass & 2 momentum-balance constraints
 - Uncertainties for masses & momentum sum from MC
- Choose best result from a set of random starting values
 - 400 tries/mass hypothesis
 - Exclude events with low convergence rates (<0.2)
- Efficiently reduces fluctuations in the final likelihood when repeating the fit

Benedikt Mura

Leptonic Cascde Fit: Preliminary Results

 Reconstruction of LSP momenta in signal (using correct masses in the fit, full combinatorics)

• Performance in combinatorial problem (16/32 possibilities):

Correct assignment	42%
Lepton exchanged on same branch	42%
Particle assigned to the wrong branch	6%

- Visualization in 2D mass plane:
 - $m(\tilde{\chi}_2^0)$ and $m(\tilde{\chi}_1^0)$ fixed to central values
 - Vary squark & slepton masses
 - Nice agreement of maximum and true masses (boxes) and their mean value (white marker)

m(q) [GeV]

Summary

- The LHC will provide new observables for determination or constraining of parameters of BSM-models: kinematic end-points, rates, invariant multi-jet distributions ...
- Various methods available to determine the masses: Global fits (rather model dependent), hybrid methods, multi- or single-event method (less model dependent)
- New approach: kinematic fit for event reconstruction in combination with mass scan
 - Genetic algorithm yields comparable results to Lagrangian Multipliers and is well suited for highly non linear problems
 - Kinematic fits provide a powerful tool to reconstruct SUSY cascades
 - Invariant mass constraints reduce combinatorial background of signal cascades (0.08% →
 ~45%)
 - Combinatorial SUSY background dominant for studied mSUGRA scenario \rightarrow further discriminating variables needed, e.g. $\cos \theta^*$
 - Fully hadronic channel challenging, promising first results for leptonic channels

Backup

• MSUGRA model:

$$m_0 = 100 \text{ GeV}, m_{1/2} = 250 \text{ GeV}$$

 $A_0 = 0, \tan \beta = 10, \text{sign } \mu = +$

• Cross section:

$$\sigma(\tilde{q}_L) = 33 \text{ pb}, \quad BR(\tilde{q}_L \to q\tilde{\chi}_2^0) = 31.4\%$$

 $\sigma(\tilde{b}_1) = 7.6 \text{ pb}, \quad BR(\tilde{b}_1 \to b\tilde{\chi}_2^0) = 35.5\%$

• Process:

Hybrid Method: Results

Distribution of mean mass values for many MC experiments (each corresponding to 100 fb⁻¹):

Comparison of results with or without transverse momentum balance:

State	Input	End-Point Fit		Hybrid Method, E_T^{miss}		Hybrid Method, no E_T^{miss}	
		Mean	Error	Mean	Error	Mean	Error
$\tilde{\chi}_1^0$	96.05	96.5	8.0	95.8(92.2)	5.3(5.5)	97.7(96.9)	7.6(8.0)
\widetilde{l}_R	142.97	143.3	7.9	142.2(138.7)	5.4(5.6)	144.5(143.8)	7.8(8.1)
$\tilde{\chi}_2^0$	176.81	177.2	7.7	176.4(172.8)	5.3(5.4)	178.4(177.6)	7.6(7.9)
$ ilde{q}_L$	537.2-543.0	540.4	12.6	540.7(534.8)	8.5(8.7)	542.9(541.4)	12.2(12.7)

Single-Events Solution - Results

Dependence of determined masses on momentum resolution and goodness-of-fit quality cut ξ_{\max}^2 :

$\delta p/p$	$\xi_{\rm max}^2$	f_{ξ}	$f_{ m cor}$	$M_{\tilde{q}}$ (540)	$M_{\tilde{\chi}_{2}^{0}}$ (177)	$M_{\tilde{\ell}}$ (143)	$M_{\tilde{\chi}_{1}^{0}}$ (96)
0	∞	100%	72%	538 ± 20	176 ± 12	143 ± 7	95 ± 10
0	100	80%	76%	539 ± 7	177 ± 1	144 ± 1	96 ± 2
5%	∞	100%	52%	534 ± 28	176 ± 11	143 ± 10	95 ± 13
5%	100	57%	55%	539 ± 9	178 ± 3	144 ± 2	96 ± 4
10%	∞	100%	40%	522 ± 37	171 ± 18	140 ± 17	88 ± 26
10%	200	42%	43%	530 ± 22	173 ± 12	140 ± 12	89 ± 20