

AMO endstation at Shanghai FELs and research

Yuhai Jiang

Shanghai Advanced Research Institute ShanghaiTech University

http://www.sari.cas.cn

Shanghai Advanced Research Institute (SARI)

FELs at Shanghai

SXFEL: experimental hall

SXFEL: experimental hall

CDI Coherent Diffraction Imaging
SRM Live-cell Fluorescence Super-resolution Microscope
TXS Time-resolved X-ray Scattering
UXS Ultrafast X-ray Spectroscopy for Chemistry
PES Ambient Pressure Photoelectron Spectroscopy
AMO Molecular Dynamic Imaging
CVI Composite Velocity-map Imaging Spectrometer

SHINE

Seeding FEL Beam-line Layout (Bin Li)

Seeding FEL Parameters (Bin Li)

Parameters	Units	Seeding FEL
Photon energy range	eV	100eV-620eV
Repetition rate	Hz	10Hz(baseline) 50Hz(upgrade)
Pulse Energy	μ	100eV-300eV(~50uJ) 400eV(~20uJ) 500eV(~5uJ)
Energy Resolution (ΔE/E)		~0.03% (100eV) ~0.01% (200-400eV)
Polarization		Plano or Elliptic
Pulse length (FWHM)	fs	50-200fs
Resolving power of on-line spectrometer		E/ΔE>2x10 ⁴ (250-620 eV) E/ΔE>3x10 ⁴ (100-250 eV)
Spot diameter @sample	μm	<6μm (400eV) <20μm (100eV)

Optical lasers: 35fs, 240 nm-15 µm, HHG (Jiaming Jiang)

AMO endstation: Coltrims/REMI

Supersonic Jet, dump, diff. pump, main chamber, alignment, data taking etc.

Reaction Microscope (**REMI/Coltrims**) : technical routine

MCP: $t_z \rightarrow Pz$ Delayline: t_x , $t_y \rightarrow x$, $y \rightarrow Px$, Py f_x sim

Spectrometer:

- μeV resolution for ions
- meV for electrons
- base pressure 10⁻¹¹ mbar
- fast detector readout (Multichannels, 1 GHz)
- Target density: 10¹² cm⁻³
- Target temper.: 100 mK

Character:

- Supersonic jet for gas phase and volatile targets
- 4π electron and ion imaging
- Electron and ion in coincidence

SHINE

COLTRIMS@SXFEL

Supersonic Jet diff. pumping main chamber dump data taking

COLTRIMS@SXFEL

Supersonic Jet diff. pumping main chamber dump data taking

COLTRIMS@SXFEL

Supersonic gas jet

SIDM

SHINE

Supersonic gas jet

Main chamber overview

SIOM

Spectrometer & detectors

DLD 120 for ion detection

- ✓ 1mm thick ring electrode: inner diameter
 130mm
- ✓ 12 mm period with 300k Ohm resistance
- ✓ 22 mm spacing at collision center
- $\checkmark~96$ mm for ion and 184 mm for electron
- ✓ Meshes at the end of the accelerate region & before MCP front

Similar to FLASH2 J. Synchrotron Rad. (2019) 26, 854–867

Electronics & DAQ

Preliminary signals with IR laser

Preliminary results with IR laser

Ionic momentum resolution 1.3/130=1%

PIPICO

Pz_1

Pz_sum

Preliminary results with IR laser

Ionic momentum resolution 1.3/130=1%

PIPICO

 $\begin{array}{c} \textcircled{1}{N_2}{O^{2+}} \rightarrow {N_2}^+ + {O^+} \\ \fbox{2}{N_2}{O^{2+}} \rightarrow {NO^+} + {N^+} \end{array}$

$$\begin{array}{c} \textcircled{3}{N_2}{O^{3+}} \rightarrow {N_2}^{+} + O^{2+} \\ \textcircled{4}{N_2}{O^{3+}} \rightarrow NO^{+} + N^{2+} \\ \textcircled{5}{N_2}{O^{3+}} \rightarrow {N_2}^{2+} + O^{+} \\ \textcircled{6}{N_2}{O^{3+}} \rightarrow NO^{2+} + N^{+} \end{array}$$

$$\begin{array}{c} 7 N_2 O^{4+} \rightarrow N_2^{2+} + O^{2+} \\ \hline & 8 N_2 O^{4+} \rightarrow NO^{2+} + N^{2+} \end{array}$$

(9)N₂O⁵⁺→NO²⁺ + N³⁺

$$(3)N_2O^{3+} \rightarrow NO^{2+} + N^{+}$$

 $(7)N_2O^{4+} \rightarrow N_2^{2+} + O^{2+}$

- The focal length of the EM mirror is 2 meter and the distance of 1.3 m is available
- ✓ 3 aperture guiding systems are placed between the mirror chamber and the main chamber
- Optical laser coupling chamber is being designed.

Next step: FEL Dump (Faraday cup)

Ion:

E: 1, 20 eV Position Y: -0.5mm~0.5mm ΔE/E: 2% Electron: E: 10, 300 eV Position Y: -0.5mm~0.5mm Δ E/E: 1% \square Vaccum: 2*10^-10 mbar \rightarrow 5*10^-11 mbar, NEG pump

□ Fast ADC: (2*4 channels, 10 bits, 1.25 Gs/s)

□ Less volatile targets: Even-Lavie Valve

Focus and overlapping: YAG screen for spatial overlapping (under discussions)

□ FEL dump: faraday cup

Optical laser coupling: holey mirror and coupling chamber

Seeding FEL Beam-line Layout

Composite VMI Spectrometer(Liu Xiaojing)

SHINE

Reaction plane-TOP view

Vacuum:

Jet off:	5E-8,	2E-9,	7E-11, 7E-11,	1E-10 mbar
Jet on:	1E-3,	3E-6,	2E-10, 7E-11,	1E-10 mbar

Electron resolution: 1.7%@500 eV, hv=600 eV Ion resolution: 3.7%@5.6 eV, 800 nm

Workgench PAs Particles PE/Contours Variables Display Log Hide Initial Conditions Particle trajectory initial Define Particles Conditions Variables Display Log Hide Particle trajectory initial Conditions Conditions of Conducts Variables Display Log Hide Particle trajectory initial Conditions Conditions of Conducts Variables Display Log Hide Particle trajectory initial Conditions and Calculation options. Conditions of Conducts Variables Display Log Hide Particle trajectory initial Conditions and Calculation options. Conditions of Conducts Variables Display Log Hide Pause steep Pause event Del Pause event Conditions of Conduction options. Display: 1XY 2 ZY 3 XZ 4 30 Iso 5 30 PF Zoom: ZZD 5 Z3D 4Z3D Prigt D.Quaki 3 ©	, 1000
Quit Elym Command; Ely completed 336 colats 331 seconds 236 Colats and 155 and 200 mm and 500 700 mm (and a mm (and	

SHINE

AMO Perspectives at SXFEL

 Multiphoton measurements nolinear processes of atoms; coherent two-photon control; (limited by SXFEL intensity)

Time-resoved molecular coulomb explosion
 XUV-pump/IR-probe (limited by pusle duration and repetition rate)

AMO endstation at SHINE (design conception)

AMO layout (three focuses separated by about 1.5 m)

AMO endstation at SHINE (design conception)

COLTRIMS: Coincident electron and ion measurements (slow electron, up to 1MHz)

MB/VMI: electron and ion measurements (up to 10 KHz)

AMO endstation at SHINE (design conception)

 Beamline Performances: ✓ Photon energy: 0.4–3 KeV ✓ Repetition rate: up to 1 MHz ✓ Intensity: 10¹¹ –10¹⁶ W ✓ Focus: <2 μm ✓ Pulse duration: 10 fs 	More require suggestions are highly we	ments and for AMO endstation elcome!		
eTOFs: Coltrainer		MB/VMI: electron		
High resolution electron	electron and ion	and ion		
spectroscopy (fast electron,	measurements (slow	measurements (up to		
up to 1MHz)	electron, up to 1MHz)	10 KHz)		
AMO slit1lmager 315 1 315 8 317 318 3 BPIM are Three to 325				

 Multiphoton processes in atoms and molecules inner shell excitation ionization, Auger decay, Autoionization, super-excitation, coherent control etc.

✓ Ultrafast atomic and molecular dynamics

electron relaxation, change of molecular structures, charge transfer, ICD, isomerization, breaking and formation of molecular bond, diffraction of molecular structures, nuclear motion, electron ionization in reaction coordinate etc.

AMO Science at FELs

L. Young et al., JPB 51, 032003 (2018)

X-ray light above 993 eV

X-ray light

below 870 eV

hollow atoms, inner shell vacancies, Young, Nature 466, 56–61 (2010)

Resonance-enhanced ionization for heavy atoms

Monte Carlo simulations: photoionization, resonanceenhanced, Bound-bound transitions, Auger decay, and fluorescence processes

Ho et al PRL 113, 253001 (2014)

Molecular black hole: up to I⁴⁷⁺, complex charge transfer

CH₃I

Artem et al., Nature 546, 129 (2017)

44 eV, N⁺+N⁺

Jiang et al., Phys. Rev. Lett. 102,123002 (2009)

Molecular reactions: isomerization

Jiang et al., Phys. Rev. Lett. 105, 263002 (2010)

Molecular reactions: isomerization

Y.H. Jiang et al. arXiv:1402.4874

Time-evolution of electron distributions — in the molecular frame

High repetition FELs are needed for photoelectron photoion coincident detection!!

Magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) for Rubidium: combination of ultrafast and cold atom

Structures: Laser locking system; 2D MOT; 3D MOT; spectrometer and science chamber; electron and ion detectors; data taking system; vacuum system, femtosecond laser

Li et al., Journal of Instrumentation 14, 02022 (2019)

Rb-Motrims

Rb-MOTRIMS

Li et al., Journal of Instrumentation 14, 02022 (2019)

- **>** Temperature: 130 μK, three orders lower than supersonic jet
- ➤ TOF: △t/t=2/10000
- Momentum resolution: 0.12 a.u., one order more than same mass target with the supersonic jet

High resolution TOF spectroscopy

Intensity: 10¹⁶ W/cm² Pulse duration: 35 fs Wavelength: 800 nm

High resolution TOF spectroscopy

a 0.05

1.5 and 2 keV

