Intro to the DESY TCT system

Old but gold?

Hendrik Jansen

What is TCT?

The Transient-Current Technique (TCT) measurement:

Laser is directed onto a sample
 eh-pairs are created inside the device
 Electric field separates charges
 Drifting charges induce current (Ramo-Theorem)

 \rightarrow measure the transient current using fast (GHz) amplifier.

In p-type silicon with red laser, measure mostly h⁺/e⁻ for top/bottom TCT.

Bias Sensor and read via AC-coupling on HV-side or via DC-coupling from LV-side.

Let's first look at the charge creation

In theory, for flat E-field and constant E_w

Zero charge density \rightarrow constant E-field

 \rightarrow constant v_{drift}

MIP: With different drift velocities

With spatially dependent E

E_w from a strip detector

Constant charge density → Linear E-field

→ Linear E-neiu

In practice, with E_w from a strip detector, and transfer functions from electronics

The TCT system at DESY

Acquired ~2013 (?) by Doris, vendor: Particulars Slovenia http://particulars.si/

Assembled and complemented in 2014 by Hendrik

Used by Mykyta in 2015 and during EDIT school in 2020

DESY. | TCT system | Hendrik Jansen

The TCT system at DESY

Properties

Some specifications of interest

Parameter

Component

Laser

Laser diode	
wavelength:	660 nm, 1064 nm (optional others)
pulse power:	few m.i.p 100 m.i.p. (equivalent in 300 micron Si)
pulse width:	<350 ps - 4000 ps (tunable)
coupling:	single core fibre
Driver	
control:	with PC over USB
running mode:	single pulse: 50 Hz - 1MHz
	patter mode: mHz to 100 kHZ
	1024 bits deep sequence of pulses
	minimum distance between two pulses $_{440}\mathrm{ns}$
external control:	external NIM logical signal
I/O:	ext. trigger in/trigger out MC/trigger out laser

(FWHM):	·
coupling:	fibre coupled
attenuation:	through collimator on beam-expander
size:	
translation:	3-axis computer controlled
load/stage:	2 kg
moving range:	5 cm x 5 cm x 5cm (x,y,z)
position resolution:	< 1 micron
Control:	via USB
amplifier:	53 dB
Bias-T range:	>1000 V
frequency range:	<0.3 MHz->3000 MHz
cooling type:	Peltier element
heat remover:	water / inlets provided
cooling power:	40W (dT~40C)
test sample box:	2.5x3 cm2 - other sizes optional
mounting plane:	5 cm x 5 cm

<11 microns@1064 nm, <8 microns@660 nm

Page 8

 $5\,\mathrm{cm}\,\mathrm{x}\,5\,\mathrm{cm}$

Optics

Mechanics

Electronics

Mounting brackets

beam spot

Assorted features

Environmental

- cooling via Peltier element (-30 C)
- PID controller for Peltier
- Dry air from wall distributor
- Heat sink via Huber chiller

Positioning

- x-y (sample) and z (optical distance)
- Via stepper, no driver for W10

Monitoring

- Beam splitter (10:90 and 50:50)
- Diode for shot-by-shot monitoring

Bias and readout

- Keithley 2410
- Wave Runner 640 Zi, 4 GHz, 40 GS/s
- Two 2 GHz amplifiers, ~50 dB
- LV power supply

NB: $t_{10\%-90\%} \approx 0.36 / 2 \text{ GHz} = 180 \text{ ps}$

Our PCB

Designed at DESY

For Top/Bottom/Edge-TCT

Usual sensor size: 10 mm x 10 mm

Up to 30 mm x 10 mm

Input: HV from J1

Output: Two signals

Hold-down clamp \rightarrow No glue needed

Layer view

- High analogue bandwidth
- Flat (symmetric layers)
- Impedance-matched traces
- No "ringing" observed (as in many other setups)
- Bonding on traces instead of pads

PCB with mount

- 3D printed hold-down clamp
- One PCB per sensor
- Copper mount designed @UHH
- Need two mounts:
- 1) Measurement
- 2) Bonding

Openings for Top/Bottom/Edge TCT in mount and lit

The DAQ+C system

Interface b/w hardware and development environment

Is originally based on Scope + NI-VISA + LabView + Code by Gregor Kramberger http://particulars.si/TCTAnalyse/index.html (last changed in 2013 (?))

Manual from 2016

LV VI was always, and probably still is buggy

Allows for automated scanning in various dimensions (x,y,z, V_{bias})

System is from ~2013, some parts from 200x.

Stepper for the stages is controlled via USB, need appropriate driver + FW.

"DAQ" is actually DAQ+Control system.

No driver update for W10, the W7 one did not work

- Either stick with a W7 PC + LV
- \rightarrow No LAN connection, stuck in the past ... and with W7 ...
- Or, at least update the system (new stepper controller) \rightarrow Spend money on new stepper (1000+ Euros), make sure that all components
- work under W10 (laser driver, temperature controller). Stuck with W10.
- And maybe, re-write the "DAQ+Control system" in C++ to avoid LV altogether \rightarrow Spend time on DAQ+C system

The analysis framework

- Mykyta and me: Save binary from LabView Use library from Gregor Write perform analysis compiled C++/ROOT. Cmake for creating make files, etc.
- https://github.com/garankonic/TCT-analysis (last edit 2017)

😣 🖻 🗉 TCT-Analysis				
Oscilloscope Data TCT Data				
Channels W Readout Channel 1 Integrate from 40 ns to Readout Channel 2 Integrate from 40 ns to Photodiode Channel 3	 Folders Set Data and Output folders Physical Parameters Setting physical parameters like mobility, amplification, etc View Sample Config Change sample config (sensor name, thickness) 			
Integrate from 40 ns to 80 ns Integrate from 40 sto Integrate from 40 sto	Top TCT Options Available			
OthersVoltage Source1Scanning AxisXYZOptical AxisXYZSave Separate ChargesSave Separate WaveformsTime Between Moves1,00Bias Line Int. Time5,00	 Focus Search Double Channel Analysis Sensor Position Search Depletion Voltage Charge Carriers Mobility Select Files 			
	Run TBrowser Start Analysis			

The DAQ system 2

In 2017, Oleksandr started a C++ based DAQ+C as summer student project. https://github.com/korostysh/TCT-daq

Communication with oscilloscope is based on "LeCroy X-Stream Oscilloscopes Remote Control ". http://cdn.teledynelecroy.com/files/manuals/wm-rcm-e_rev_d.pdf

AFAIK, there is no manual or documentation.

What was achieved in 2015? Top TCT

Scan along surface, perform focus finding

What was achieved in 2015? Top TCT

Minimum of "FWHM" finds position with focus at sensor surface

Probably, FWHM is the sum of the widths for Erf-Fit of left and right edge

Shoot from the side, scan along depth, perform focus finding

Minimum of FWHM finds position with focus below connected strip

Probably, FWHM is the sum of the widths for Erf-Fit of left and right edge

Charge profiles along depth: Integrate current pulse for each position

Edge TCT

Electric field profiles along depth using the initial current

Conclusion

TCT measurements can yield important insights to your device.

TCT measurements are to be interpreted with care!

The system has slightly aged ...

DAQ+C never worked like a charm ... needs effort for scientific use.