Extending the reach of ALPS II in mass by increasing the refractive index within the optical resonators.

$\boldsymbol{\ell}$ is the length of the magnetic field B
$\mathrm{F}(\mathrm{ql})$ is the so called formfactor:
For a single dipole of length I it is given by:

$$
F(q \ell)=\left[\frac{\sin \left(\frac{1}{2} q \ell\right)}{\frac{1}{2} q \ell}\right]
$$

The production probability for Axion like Particles (ALP) by the interaction of photons with a magnetic field is given by :

$$
P_{\gamma \rightarrow \phi}(B, \ell, q)=\frac{1}{4}(g B \ell)^{2} F(q \ell)^{2}
$$

q is the momentum transfer from photon to ALP
q depends on the refractive index \mathbf{n}

$$
\mathrm{q}:=\mathrm{n} \cdot \omega-\sqrt{\omega^{2}-\mathrm{m}^{2}}
$$

$$
\mathrm{q}:=\omega \cdot(\mathrm{n}-1)+\frac{1}{2} \cdot \frac{\mathrm{~m}^{2}}{\omega}
$$

ω is the photon energy
m is the ALP mass

For $m \ll \omega$

For a string of \mathbf{N} magnets (ALPS II) the probability is more complicated:
from DESY 10-147; ArXiv 1009.4875
[Paola Arias, Joerg Jaeckel, Javier Redondo, Andreas Ringwald]
$\mathrm{P}_{\gamma \Phi}=\frac{1}{4} \cdot(\mathrm{~g} \cdot \mathrm{~N} \cdot 1 \cdot \mathrm{~B})^{2} \cdot \frac{\omega}{\sqrt{\omega^{2}-\mathrm{m}^{2}}} \cdot\left(\frac{\sin \left(\frac{\mathrm{q} \cdot 1}{2}\right)^{2}}{\frac{1}{2} \cdot \mathrm{q} \cdot \mathrm{N} \cdot 1}\right)^{2}\left[\frac{\sin \left[\frac{1}{2} \mathrm{q} \cdot \mathrm{N} \cdot(\mathrm{l}+\Delta)\right]}{\sin \left[\frac{1}{2} \mathrm{q} \cdot(1+\Delta)\right]}\right]^{2}$

$$
\mathrm{q}:=\omega \cdot(\mathrm{n}-1)+\frac{1}{2} \cdot \frac{\mathrm{~m}^{2}}{\omega}
$$

I is the length of an individual dipole: $\mathbf{8 . 8 2 6 ~ m}$
\mathbf{N} is the number of dipoles in the string $\mathbf{1 2}$
Δ is the distance between individual dipoles 0.9 m

For the single dipole of ALPS I with a beam tube at room temperature, Argon gas was used to increase the refractive index.

For ALPS II, gases injected into the cold vacuum pipe will condense on the surface, with vapor pressures too low for an increase of the refractive index useful for the experiment.

Only the insertion of Helium can lead to a pressure increase in the cold pipe yielding a usable change of the refractive index at ALPS II.

Paola Arias has calculated the photon-ALP coupling strength
for $n>1$ in the ALPS IIc setup with $\mathbf{1 0}$ dipoles! Here an example:

~Limit for coupling
in the pressure range:
5*10^-4 to
$5^{*} 10^{\wedge}-2$ mbar at 4.2 K

Calculation by Paola Arias

Helium atoms will also condense on the cold wall of the pipe. But when the coverage of molecules approaches a so called 'mono layer' ($\sim 10^{\wedge} 15$ molecules $/ \mathrm{cm}^{\wedge} 2$) the gas pressure in the pipe will reach values useful for the ALPS II experiment.

Experimental test of the propagation of a He pressure front in a long, cryogenically cooled tube E. Walle'n

CERN, CH-1211 Geneva 23, Switzerland
J. Vac. Sci. Technol. A 15(6), 2949-2958 ,Nov/Dec 1997

For the pressure range between $5^{*} 10^{\wedge-4}$ and $5^{*} 10^{\wedge}-2$ mbar we need higher surface coverage.

When one inserts Helium into an evacuated pipe at 4.2 K it takes some time for the Helium to spread along the pipe.
Helium gas injected into the
cold beam pipe will condense
on the cold wall of the pipe.
The coverage will propagate
along the pipe until an
equilibrium between the
pressure in the gas and the
coverage on the wall has been
established in the whole tube.

One has to wait until
an equilibrium has been
established.

at Fermilab for the

Helium gas was inserted into the beam pipe of the TEVATRON at Fermilab and the pressure was measured 20 m away from gas inlet.

Fig. 3. A record in time of the helium pressure at the sniffer location after establishing a helium pressure of $\sim 2.5 \times 10^{-4}$ Torr 20 m away.
D. Edwards jr., P. Limon J.Vac.Sci.Technology 15(3)1978,p. 1186

To determine the 'cold' pressure pk f.i. in a beam pipe from the pressure pm measured at room temperature, the Knudsen equation, relating the pressures within vessels at different temperatures connected by a tube, is used in the literature.

However, this simple Knudsen relation starts to break down for Helium in the pressure range above $10^{\wedge}-5 \mathrm{mbar}$ at 4.2 K for the size of the ALPS II beam pipe (5.3 cm).
(mean free path $\lambda \approx 4 \mathrm{~cm}$ at ${ }^{\sim 10 \wedge}{ }^{\wedge} 5 \mathrm{mbar}$ and 4.2 K).

The so called 'thermal transpiration ratio $\mathbf{R}\left(=\mathbf{p}_{\mathbf{1}} / \mathbf{p}_{\mathbf{2}}\right)^{\prime}$ ' for connected vessels at different temperatures has been measured for Helium and empirical formulas have been established to describe the behavior between molecular and viscous regime.

Some Measurements of Thermal Transpiration
S. Chu Liang

National Research Council, Ottawa, Canada
(Received July 7, 1950)

for instance

$$
R=\frac{\alpha_{\mathrm{H}(}\left(\phi_{g} X\right)^{2}+\beta_{\mathrm{He}}\left(\phi_{g} X\right)+R_{m}}{\alpha_{\mathrm{He}}\left(\phi_{g} X\right)^{2}+\beta_{\mathrm{He}}\left(\phi_{g} X\right)+1},
$$

where $X=P_{2} d$,
$\phi=0$ for Helium $\quad R_{m}=\left(T_{1} / T_{2}\right)^{1 / 2}$,
The figure shows measurements of the thermal transpiration ratio for Helium at $77,4 \mathrm{~K}$ as a function of the 'warm' pressure p2 times the tube diameter by Edmonds and Hobson

A Study of Thermal Transpiration Using Ultrahigh-Vacuum Techniques
Edmonds and Hobson
Journal of Vacuum Science and Technology 2, 182
(1965); https://doi.org/10.1116/1.1492423

cold	connecting tube	warm
	of diameter d	

The transpiration ratio $\mathrm{R}=\mathrm{p} 1 / \mathrm{p} 2$ for Helium, using the Liang formula (with the constants modified by Edmonds and Hobson), is shown for a temperature of 4.2 K and tubes with different diameters connecting cold and warm volume. It should be verified, that the relation is applicable in temperature range below $\sim 10 \mathrm{~K}$.

I am considering to perform an experiment at the HERA dipole remaining on the test bench. Experimental program and details have to be worked out with the colleagues from the vacuum group MVS and the cryogenics group MKS. Christoph Reinhardt wants to join.

Goal: establish best method to determine Helium pressure in cold pipe

Tube
 temperature by establishing several Helium pressures in the pipe.

- Cool down dipole to ~ $\mathrm{T}^{\sim 10} \mathrm{~K}$
- When cold, let several fixed amounts of Helium gas into the system starting from low pressure. Wait for stabilization of pressures.
- The pressure in the cold magnet tube is given by the amount of inserted gas. It can be related to the pressures measured at room temperature.

Possible experiment at the HERA dipole on the test bench.

Once validity of relation is established use relation to determine pressure in beam pipe at 4.2 K from pressure measurement at room temperature.

How do we measure the Helium pressure at room temperature? Range $5^{*} 10^{\wedge}-4$ to $5^{*} 10^{\wedge-2 ~ m b a r . ~}$

Capacitive manometers are adequate, provided gas is mainly Helium.
With Non-Evaporable-Getter (NEG) pumps other gases can be pumped away without effecting the Helium pressure.

Other way: After pressure stabilization, close valve between tube and vessel, pump on vessel (through a needle valve) and measure Helium rate at the pump station with a calibrated leak detector; integrate rate to get Helium pressure. Clumsy but possible.

Scenario for ALPS IIc.

Many details remain to be worked out with the colleagues from MVS and MKS.

System at room temperature

Pump out Helium gas from pipe
Cool down magnet strings

System at 4.2 K
(Activate NEG pumps)?
Inject defined quantities of Helium into the system at one side.
Measure Helium pressure and evolution.
Wait for stabilization.
Measure ALPs rate.

END

Dependence of the refractive index n on the pressure p of Helium in the cold beam pipe

The refractive index of Helium at $300 \mathrm{~K}, 1000 \mathrm{mbar}$ and	
a wavelength of 1064 nm is	1,00003475
and for green light of 532 nm	1,00003503

from Michael Polyansky 'refractive index Info'; Source: Handbook of Optical Materials
Marvin J. Weber
The relation between the gas density ρ and the refractive index is given by the Lorentz-Lorenz law

As the deviation of n from 1 is very small in our case the relation simplifies to:

$$
\text { konst } \cdot \rho:=\frac{2}{3} \cdot(\mathrm{n}-1)
$$

$$
n_{c}-1=\left(n_{w}-1\right) \frac{T_{w}}{T_{c}} \frac{p_{c}}{p_{w}}
$$

With pw=1000 mbar Tw $=300 \mathrm{~K}$

END

