

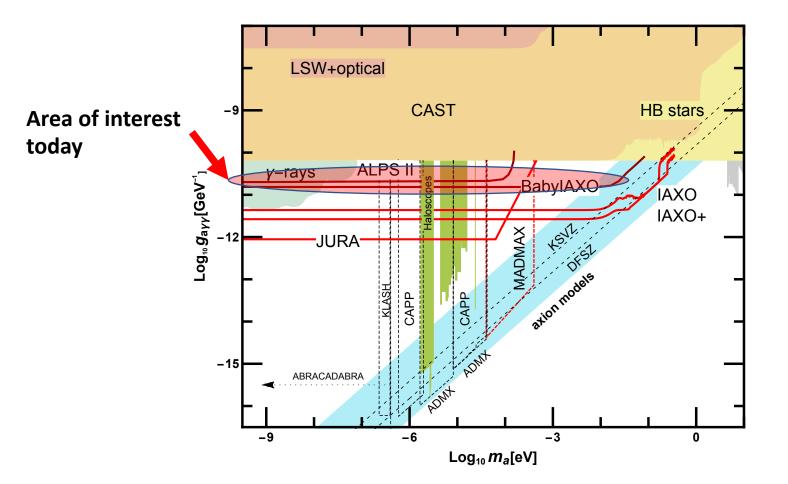
Combining ALPS and BabyIAXO+DM Exploration Beyond Discovery

Joerg Jaeckel¹

Special Thanks to Lennert Thormaehlen¹ and Sebastian Hoof² + Everybody I forgot... ¹Heidelberg University, ²Goettingen University

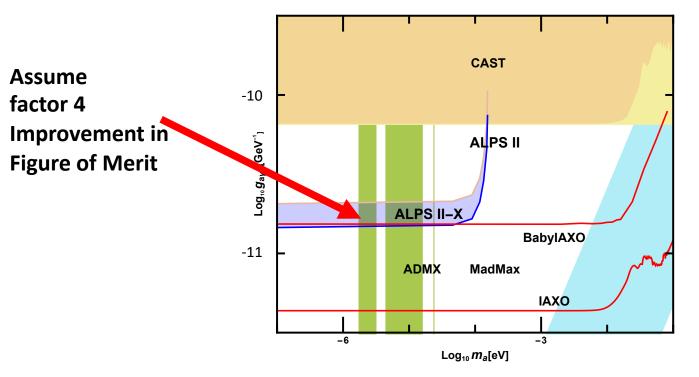
All that follows is super-optimistic and purely qualitative!!!

A proper quantitative treatment probably yields that one must improve quite a bit more (~1000 *events required)!



Starting point ~2025

- BabyIAXO has discovered a new particle \bigcirc .
- → Can we learn more by combining with ALPS-IIx?



Prospects

Zoom on BabyIAXO/ALPS area

- Considerable Parameter space could be explored by both Baby-IAXO and ALPS II-X
- Question: What new things can we learn from a combination of ALPS and BabyIAXO?

Determine $g_{a\gamma\gamma}$ and g_{aee}

• BabyIAXO sees a combination of

observed $flux \sim |g_{a\gamma\gamma}|^2 (C|g_{a\gamma\gamma}|^2 + D|g_{aee}|^2)$

• ALPS

observed $flux \sim |g_{a\gamma\gamma}|^4$

Combined measurement allows to determine both couplings independently

(Baby)IAXO may also resolve both couplings independently, but this requires a spectral measurement and probably more events... but this needs to be quantified...

Measure Solar Physics (Thanks to L. Thormaehlen!)

- If " $g_{a\gamma\gamma}$ " can be measured to $\leq (2-3)\%$ we can turn around and call it measurement of $observed \ flux \sim |g_{a\gamma\gamma}|^2 (C|g_{a\gamma\gamma}|^2 + D|g_{aee}|^2)$
- $\lesssim (2-3)\%$ measurement of C
 - We can tell difference

between low- and high-metallicity solar models

https://arxiv.org/pdf/2101.08789.pdf

Mass measurement $m \sim 10^{-4} \, {\rm eV}$

• (Baby)IAXO can measure masses $m\gtrsim {
m few} imes 10^{-3}\,{
m eV}$

https://arxiv.org/pdf/1811.09290.pdf https://arxiv.org/pdf/1811.09278.pdf

Talk by Dieter Trines

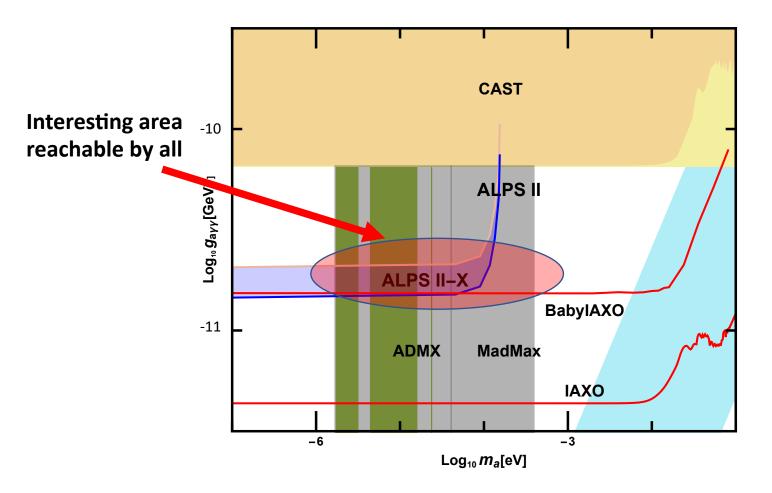
Log₁₀ m_a[eV]

Heidelberg Universitv

- Changing distances between magnets (not easy) (moves interferences)
- Maybe insert gas or similar $n \neq 1$
- ALPS could measure masses -10 $m \sim 10^{-4} \, \mathrm{eV}$

Determine CP properties of ALP

$$\mathcal{L} \supset -g_{a\gamma\gamma}\frac{a}{4} \left[F\tilde{F} + \epsilon F^2 \right] \sim -g_{a\gamma\gamma}a\mathbf{B}_{mag} \left[\mathbf{E}_{Las} + \epsilon \mathbf{B}_{Las} \right]$$
CP violating scalar coupling


→ Measure polarization dependence ($\theta = \measuredangle \mathbf{B}_{mag}, \mathbf{E}_{Las}$) observed flux ~ $\cos^4(\theta - \epsilon)$

Caveat: Fifth-Force measurements constrain

$$\epsilon \lesssim 10^{-7} \left(\frac{10^{-10} \, {\rm GeV}}{g_{a\gamma\gamma}} \right)$$
 for $m \sim 10^{-4} \, {\rm eV}$ https://arxiv.org/pdf/hep-ph/0610286.pdf

Combining with Dark Matter Experiments

Check for Dark Matter

- DM experiments (e.g. ADMX, MadMax) could perform a DM search of the target area
- Due to the large coupling in the target area this should be doable quickly
- →Good mass measurement by ALPS in region m ~ 10⁻⁴ eV
 →can decide whether ADMX or MadMax better
 →scanning significantly easier (especially for MadMax)

Dark Matter is Discovered 😳

- BabylAXO and ALPS measure $\,g_{a\gamma\gamma}$
- DM experiment (MadMax or ADMX)

observed
$$flux \sim |g_{a\gamma\gamma}|^2 \rho_{\rm CDM}^{\rm local}$$

- ightarrow Measure $ho_{
 m CDM}^{
 m local}$
- ➔ Confirm this is dominant form of DM
- ➔ DM really discovered!

Conclusions (Pipe dreams of discovery)

If we are lucky...

Combined measurements (ALPS, BabyIAXO, ADMX, MadMax...) can tell us a lot:

- \circ Determine $\,g_{a\gamma\gamma}\,$ and $\,g_{aee}\,$
- Measure mass

➔information on underlying model

- Measure CP properties
- Resolve solar metallicity problem
- \circ Facilitate DM search \circ Measure $\rho_{\rm CDM}^{\rm local}$ and discover dominant DM

CAVEAT: All this needs to be quantified!