### W/Z/Higgs Production at the LHC & PDF Uncertainties

Are we ready to make discoveries at the LHC

Fred Olness

SMU

Conspirators: P. Nadolsky, K. Park, I Schienbein, J.-Y. Yu, Karol Kovarik, T.P. Stavreva J. Owens, J. Morfin, C. Keppel, ...

Fred Olness

8 March 2010 Desy





8 March 2010

DESY

### LHC started up in November 2009





Fred Olness

# W/Z at LHC & the race for the Higgs

### **Search for the Higgs Particle**

#### Status as of March 2009

#### 90% confidence level 95% confidence level





Higgs Mass (GeV)

Tevatron Run II Preliminary, L=2.0-5.4 fb<sup>-1</sup>

# How well can we predict the W/Z

#### Large Shifts in Benchmark W & Z Cross Sections



"Old" is "New" --- Re-discovering W & Z



- Larger  $E \implies$  probes PDFs to small x
- Larger Rapidity  $\Rightarrow$  probes PDFs to really small x
- Larger fraction of heavy quarks

#### **PDF Uncertainties** $\Rightarrow$ **S(x) PDF** W/Z at LHC $\Rightarrow$



8

Fred Olness

# What is HERA's Role

#### What is HERA's Role



### F2: Essential Foundation of LHC Predictions

H1 and ZEUS



### Heavy Flavor Components will play prominent role at LHC



#### **New F<sub>L</sub>** Measurements: New Perspective



Why is F<sub>L</sub> so special ???

$$\frac{d\sigma^{\nu DIS}}{dx \, dy} = (1 - y)^2 \,\bar{q}(x) + (1 - y) \,\phi(x) + q(x)$$

$$\frac{d\sigma^{\nu DIS}}{dx \, dy} = (1 - y)^2 \,F_+(x) + (1 - y) \,F_0(x) + F_-(x)$$

$$F_0 = \frac{F_2}{2x} - F_1$$

$$F_0 = 0 \implies F_2 = 2xF_1$$

Callan-Gross

$$F_L \sim \frac{m^2}{Q^2} q(x) + \alpha_S \left\{ c_g \otimes g(x) + c_q \otimes q(x) \right\}$$
Masses are

Fred Olness

important 8 March 2010 Desy

# Masses are important

for a number of reasons

#### Quark Masses: Pros & Cons

The UP side: Quark Masses Span Wide Dynamical Range  $\sim 10^4$ 



We can't vary the quark mass continuously, but these ``notches" on our control panel give us a lot of flexibility

### The DOWN side: Quark Masses Span Wide Dynamical Range ~ 10<sup>4</sup>

How do we accommodate mass scales over such a large range ???

#### The answer ...



### Heavy Quarks PDF's

Essential for disparate mass scales

Fred Olness

### **Heavy Quarks:** How do we deal with disparate scales???

**Problem:** Heavy Quark introduces new scale:

... life gets interesting.



**Solution:** Resum  $Log(M_H)$  in the Heavy Quark PDF's:

... include charm and bottom in the PDFs

DGLAP equation Resums iterative splittings inside the proton





We can describe the full kinematic range from low to high *this is the essence of the ACOT renormalization scheme* 

**ACOT:** *What is on the inside ???* 

### How do calculate with heavy quarks PDFs



### Production of Heavy Quarks: The Problem



Which is the correct production mechanism?



| Quark | <b>Channel</b> |
|-------|----------------|
| S     | YES            |
| t     | NO             |
| С     | ???            |
| b     | ???            |

Heavy Creation (HC)

| Quark | <b>Channel</b> |
|-------|----------------|
| S     | YES            |
| t     | NO             |
| С     | ???            |
| b     | ???            |

If you can't beat 'em, join 'em.

### How to Join without ``Double Counting"???



Heavy Excitation (HE)

Wait a minute! Since the heavy quark originally came from a gluon splitting, these diagrams are *Double Counting* 

### Heavy Creation (HC)

c,b,t



### How to Join without ``Double Counting"???



### There is a rigorous factorization proof ...



Application of Factorization Formula at Leading Order (LO)



Therefore:

$$\sigma^0 = f^0 \otimes \omega^0 \otimes d^0 = \delta \otimes \omega^0 \otimes \delta = \omega^0$$

$$\sigma^0 = \omega^0$$

Warning: This trivial result leads to many misconceptions at higher orders

Fred Olness

Application of Factorization Formula at Next to Leading Order NLO)

**Basic Factorization Formula** 

$$\sigma = f \otimes \omega \otimes d + \mathcal{O}(\Lambda^2/Q^2)$$

 $f^0$ 

### At First Order:

$$\sigma^{1} = f^{1} \otimes \omega^{0} \otimes d^{0} + f^{0} \otimes \omega^{1} \otimes d^{0} + f^{0} \otimes \omega^{0} \otimes d^{1}$$
$$\sigma^{1} = f^{1} \otimes \sigma^{0} + \omega^{1} + \sigma^{0} \otimes d^{1}$$

We used:  $f^0 = \delta$  and  $d^0 = \delta$  for a <u>parton</u> target.

Therefore:

$$\omega^{1} = \sigma^{1} - f^{1} \otimes \sigma^{0} - \sigma^{0} \otimes d^{1}$$





### ACOT m→ 0 limit yields MS-Bar

### no finite renormalization



### **ACOT m→ 0 limit yields MS-Bar:** *No finite renormalization*



### **ACOT m→ 0 limit yields MS-Bar:** *No finite renormalization*



Application of Factorization Formula at Next to Leading Order (NLO)

### **Combined Result:**



#### Interaction of the separate contributions vs. energy scale



``Standard" Evolution

### Logarithmic Evolution



Why does  $f_{h}(x,\mu)$  increase so quickly???



Fred Olness

### When do we need to consider heavy quark PDF evolution ???



An Example: How the separate pieces can conspire

Expand f(x)=x in Taylor Series about  $x_0$ .



Fred Olness

**The Moral** 

### You don't have to choose which expansion point you use; by using the Heavy Quark PDF, QCD will compensate

*In practice* ...

Using the heavy quark PDF's we can accommodate quark masses of any values: e.g.,  $10^{-150}$  to  $10^{+150}$ 

Use the Basic Factorization Formula

$$\sigma = f \otimes \omega \otimes d + \mathcal{O}(\Lambda^2/Q^2)$$

At Second Order (NNLO):

$$\sigma^{2} = f^{2} \otimes \omega^{0} \otimes d^{0} + \dots$$
$$+ f^{1} \otimes \omega^{1} \otimes d^{0} + \dots$$

Therefore:

$$\omega^2 = ???$$

Compute  $\omega^2$  at second order. Make a diagrammatic representation of each term.

# Heavy Quarks



### Dynamics & Kinematics

### **Effect of Kinematic Mass Re-Scaling**

ACOT (Aivazis, Collins, Olness, Tung) A general framework for including the heavy quark components. *Phys.Rev.D50:3102-3118,1994.* S-ACOT (Simplified-ACOT) ACOT with the initial-state heavy quark masses set to zero. *Phys.Rev.D62:096007,2000.* ACOT- $\chi$  & S-ACOT- $\chi$ : As above with a generalized slow-rescaling *Phys.Rev.D62:096007,2000.* 



Kinematic Masses are more important than Dynamical Masses (in general)

F<sub>2</sub> Charm in the threshold region



Kinematic Masses are more important than Dynamical Masses (in general)

F, Charm in the threshold region



A man with one watch knows what time it is; a man with two is never sure.

### Compare Schemes

# ACOT, TR, FONLL

### Schematic Summary of ACOT & TR Schemes

| TR type schemes |                    |                                        | ACOT type schemes  |      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|-----------------|--------------------|----------------------------------------|--------------------|------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Q               | e < m <sub>H</sub> | $Q > m_{H}$                            | constant<br>term   |      | Q < m <sub>H</sub>                     | $Q > m_{H}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | constant<br>term |
| LO              | Son Leeee          | ~~                                     | Q = m <sub>H</sub> | LO   | Ø                                      | ~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +Ø               |
| NLO             | +<br>Solution +    | +<br>SS<br>Leee                        | Q = m <sub>H</sub> | NLO  |                                        | +<br>Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +Ø               |
| NNLO            |                    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Q = m <sub>H</sub> | NNLC | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | the second secon | +Ø               |



### Les Houches 2009

### **Comparative Studies**



### Physics at TeV Colliders

Les Houches 8-26 June 2009



### Les Houches Comparative Study



#### A comment about schemes

Essential to match PDF with (hard) cross section in proper schemes!!!

|       |       | <b>Consistent Scheme</b> |      |            | Mixed Schemes |        |  |
|-------|-------|--------------------------|------|------------|---------------|--------|--|
| Set   | # pts | 6HQ                      | 6M   | <b>6</b> N | I⊗GM          | 6HQ⊗ZM |  |
| ZEUS  | 104   | 0.91                     | 0.98 |            | 2.84          | 3.72   |  |
| H1    | 484   | 1.02                     | 1.04 | ſ          | 1.50          | 1.22   |  |
| TOTAL | 1925  | 1.04                     | 1.06 | •          | 1.26          | 1.30   |  |

 $\delta \chi^2 \approx 420$   $\delta \chi^2 \approx 500$ 

Just because the PDFs or (hard) cross sections do not match, for a consistent scheme, the physical observable should be invariant to  $O(\alpha_s^{N+1})$ 

8 March 2010 Desy

 $\begin{array}{c}
0.5 \\
0.4 \\
\mathbf{R} \\
0.4 \\
\mathbf{R} \\
0.3 \\
0.3 \\
0.2 \\
0.2 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1 \\
0.1$ 

X

 $\chi^2/DOF$ 

### **NNLO** A proposal for NNLO PDF implementation

# Mass-Independent Evolution.

# Why is it valid?

### Conclusions



### Conclusions

HERA measurements are foundation for PDFs Any "new physics" must be calibrated against "old physics"

Combination of H1 & Zeus data sets: Improved measurements of F<sup>2</sup>, F<sup>cc</sup>, F<sup>bb</sup>, and F<sub>L</sub>: Improved precision for LHC benchmarks At LHC, heavy flavors play a prominent role:  $\Rightarrow \{s,c,b...\},$ ... key in W/Z production  $\Rightarrow$  Higgs Discovery

Theoretically, we can now compute full dynamic mass range [10<sup>-150</sup>,10<sup>+150</sup>] ACOT natural massive extension of MS-bar Mass effects are essential: Separate roles of dynamic and kinematic masses illustrated

Improvement programs & understanding on theoretical side: Les Houches benchmark comparisons enlightening

**Essential ingredient for LHC discoveries** 

### **NNLO** A proposal for NNLO PDF implementation

### $\alpha_s$ as a function of $\mu$ for various flavor numbers

### At 1-loop and 2-loops, continuous at thresholds

At  $O(\alpha_s^3)$ , not even



 $\alpha_{(n_f)}(M) = \alpha_{(n_f-1)}(M) - \frac{11}{72\pi^2} \alpha_{(n_f-1)}^3(M) + \mathcal{O}(\alpha_{(n_f-1)}^4)$ 

### f(x,μ) as a function of μ for various flavor numbers



Not continuous at  $O(\alpha_s^2)$ 

 $f_{k}^{n_{f}+1}(\mu^{2}, m_{H}^{2}) = A_{kj}(\mu^{2}/m_{H}^{2}) \otimes f_{j}^{n_{f}}(\mu^{2}), \quad \text{relate N and N+1 PDF's}$   $F(x, Q^{2}) = C_{k}^{FFNS}(Q^{2}/m_{H}^{2}) \otimes f_{k}^{n_{f}}(Q^{2}) \quad \text{implied relation of C's}$   $= C_{j}^{VFNS}(Q^{2}/m_{H}^{2}) \otimes f_{j}^{n_{f}+1}(Q^{2}) \equiv C_{j}^{VFNS}(Q^{2}/m_{H}^{2}) \otimes A_{jk}(Q^{2}/m_{H}^{2}) \otimes f_{k}^{n_{f}}(Q^{2})$ 

55

### $f(x,\mu)$ as a function of $\mu$ for various flavor numbers



56

### A Proposal for PDFs at NNLO



### A multi-flavor scheme is truly a patchwork



- \* Difference represents the theoretical uncertainty
- \* Gaps will decrease with higher orders (they must as physical quantities)

(note: gaps of PDF's and  $\alpha_s$  do not--these are unphysical quantities)

- \* If data prefers one scheme  $\Rightarrow$  optimal perturbative organization
- \* Gaps between schemes reflects limit of theory uncertainty

# Mass-Independent Evolution.

# Why is it valid?

### DGLAP Equation and the Heavy Quark PDF



DGLAP Equation  $\frac{df_i}{d \log u^2}$ 

$$\frac{df_i}{d\log\mu^2} = \frac{\alpha_s}{2\pi} \, {}^1P_{j\to i} \otimes f_j + \dots$$

Splitting Function

$${}^{1}P_{g \to q} = \frac{1}{2} [x^{2} + (1 - x)^{2}] + \left(\frac{M_{H}^{2}}{\mu^{2}}\right) [x(1 - x)]$$

10



8 March 2010 Desy

6000

### Effect of Heavy Quark Mass in the Calculation



#### In Summary:

Near threshold( $M_{H} \sim Q$ ), mass effects cancel between HE and SUB

Above threshold( $M_{H} \ll Q$ ), mass effects can be ignored

Fred Olness

Effect of Heavy Quark Mass in the Calculation is Trivial



### Variation of $\sigma$ vs. renormalization scale $\mu$



LO = HE result is very sensitive to the choice of scale (i.e.,  $\mu^2 = Q^2$  or  $Q^2/4$ ) TOT result (higher order) is stable w.r.t. the choice of scale

### An accurate calculation must be stable as the renormalization scale varies