Annual Meeting 2021 WP7

Christian J. Schmidt, Otilia Culicov 25.03.2021, online via Zoom

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072.

WP7- DETEC: horizontal activity on development of detector technologies

Charge:

Develop beyond state of the art detector technologies

Aim to foster

 cooperation, ideas and technologies-interchange
 as well as education of young scientists in the field of particle detectors and related technologies

Joining two fields that typically have only few links:

CMOS pixel sensors for nuclear- and high energy physics tracking applications

Detector technologies for thermal neutrons

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072.

Tasks within WP7

- Task 7.1: Development of CMOS technologies for high-rate Silicon trackers (CNRS-IPHC, FAIR, GUF, INR NASU)

 task leader Michael Deveaux (FAIR/GSI)
- Task 7.2: Development of new methods for effective integration of MAPS sensors in large-area tracking-detector systems with extremely low material budget (JINR, FAIR, DESY, BINP)

 → task leader Michael Deveaux (FAIR/GSI)
- Task 7.4: Training and school for young scientists on particle detection technologies (BINP, CERN) → task leader Sergej Kononov (BINP)

Multipurpose neutron reflectometer SONATA (one out of 24 instruments scheduled at PIK until 2024)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072.

Benefits: - High flux

- Optional continuous or pulsed beam
- Implemented focusing and defocusing supermirror lenses
- 3-axis neutron polarization analysis
- Variable sample-detector distance

This proiect has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072.

Milestone MS no. 7.1 & Deliverable no. D7.1 (Define neutron detector to be build)

L
Deliverable no. D7.

Project information

•		
Project full title	Connecting Russian and European Measures for Large-scale	
	Research Infrastructures – plus	
Project acronym	CREMLINplus	
Grant agreement no.	871072	
Instrument	Research and Innovation Action (RIA)	
Duration	01/02/2020 – 31/01/2024	
Website	www.cremlinplus.eu	

Deliverable information

Deliverable no.	7.1
Deliverable title	Neutron Detector requirements
Deliverable responsible	Dr. Evgeniy Altinbaev
Related Work-	Task 7.3: Next generation Neutron Detectors (ESS, JINR, NRC KI
Package/Task	PNPI, UNIMIB)
Type (e.g. Report; other)	Report
Author(s)	Evgeniy Altinbaev NRC KI PNPI), Richard Hall Wilton (ESS)
Dissemination level	Public
Document Version	1
Date	14.10.2020
Download page	

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072.

Specification for multiblade neutron detector:

- Sensitive area: 100x130 mm²
- Spatial resolution: 0.5x3.5 mm²
- Count rate: 100 MHz overall; 50 kHz per pixel Efficiency: 44% for neutrons with 2Å wavelength
 - General purpose: Reflectometry
 - Instrument: SONATA @ PIK

Reflectometry requirements@PIK -SONATA instrument

	Required design*	MB version 1 (including readout system)	MB version 2 (detector only)	
Sensitive area	400 × 400 mm ²	100 × 130 mm²	400 × 260 mm ²	
Spatial resolution	2 × 2 mm ²	0.5 × 3.5 mm ²		x3-4 better than state-of-the-art
Overall count rate		> 100 MHz ^[] (depending n scattering pattern)		
	50 kHz	13 kHz/mm ² @10% deadtime 50 kHz/px _{equivalent}		state-of-the-art
Efficiency (@ 2 Å)	40%	~ 44% (measured @ 2.5Å)		

* Communication with Evgeniy Altynbaev

- Will make us ready to set the new State-of-the-Art in reflectometry
- Will prepare to be ready in support of word leading science
- Collaboration between PIK, JINR and ESS •

Some scientific results

EUROPEAN SPALLATION SOURCE

Off-specular scattering from Fe/Si neutron supermirror Measure with the MB detector

Neutron detector design is scheduled and participants defined → integrated collaboration among ESS, PIK and FLNP

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072.

Near and Mid Future Plans

April / May 2021: Come back to Evgeniy Altynbaev/PIK with a definitive proposal to address requirements as expressed in Deliverable 7.1 report

Jun. 2021: agreement on plan of action

Autumn or Winter (COVID and personnel dependent): Build detector in Lund with team from PIK, FLNP and ESS

Wish very much for personal exchange with PIK and JINR during the detector build: collaborate effort, skills transfer and networking

Spring/Summer 2022: Testing detector (at IBR2, JINR?)

Achievements / highlights FLNP JINR

Early - pre CREMLIN+ studies:

FLNP JINR developed, designed and produced a working prototype of the position-sensitive thermal neutron detector based on a B₄C converter produced by ESS.

Results:

- Spatial resolution (0,9 mm in the coordinate perpen-dicular to the anode, 1,3 mm parallel to the anode).
- Promising results in pulsed neutron flux at IBR-2 reactor
- Start development of local sputtering capacity in FLNP (in collaboration with Dubna State University)

proficiency in B₄C coating!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072. Results:

10

• B_4C layer thickness of 100 nm-1 μ m can be sputtered on aluminium substrate.

Coordinate spectrum from the prototype

- The B₄C film: good adhesion to the surface, does not fly or flake.
- The uniform sputtering area 200mm*200mm, meets the first tasks demands. Now enlarge to meet 400mm detector needs

PSD prototype with the top cover removed

Achievements / highlights FLNP JINR

Studies within Cremlin+

- FLNP JINR developed, designed and produced a monitor counter for thermal neutrons based on B₄C converter produced in Dubna.
- The counter operates on the principle of a multi-wire proportional chamber and has a sensitive area of 40x60 mm².
- The sputtering thickness is 0.5 μm, since it was planned to use the counter in relatively low fluxes (~ 10⁴n/cm²sec).
- A 2D PSD monitor for measuring the intensity and spatial distribution of neutron beams has been developed and it is in the process of manufacturing.

Amplitude spectrum of the thermal neutron monitor with the B₄C converter produced in FLNP JINR

WP7 MIMOSIS-1: Highlights

CREMAPS goals (selected)	
Spatial resolution	~5 μm
Time resolution	< 5 μs
Sensor thickness	~60 μm
Power dissipation	< 100 - 200 mW/cm ²
Rate (average/50 µs peak)	20/80 MHz/cm ²

MIMOSIS -1 mission (selection): Find best substrate and pixel —

Established substrate

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072.

Added value: Optimized drift fields

WP7 MIMOSIS-1: First test results (so far: standard epitaxial layer)

14

WP7 CREMAPS-1: Latch-up Test @ GSI, Heavy Ion Lead Beamtime

Latch-up:

- Reversible short circuit.
- Risk: Over heating destroyed sensors
- May be extinguised by power cycle.
- Detection: Over current.

Cross section unknown, measure it...

Sensor damaged by latch-up

Latch-up detection board (GU Frankfurt)

10s

Latch-ups as seen with online monitoring

Bit flip

Latch-up

System commisioning: M. Koziel, GU-Frankfurt

Sensor installed in 1 AGeV Pb-beam @ GSI

Test successful – Results promising, stay tuned.

15

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072.

Restart

WP7 Exploration of 65 nm Imaging Technology

Motivation of the R&D:

- Smaller feature size than 180 nm technology used for MIMOSIS
 ⇒ Smaller pixels, more in-pixel functionalities, less power
 consumption, faster readout, ...
- Imaging technology available since ~Spring 2020, includes stitching ⇒ multireticle sensors.
- R&D coordinated at CERN (ALICE-ITS3 & EP-div)
- ITS3 goals: small pixels and very low material budget, exploiting stiching for "supportless" detector layers.

Prototyping at IPHC for MLR1 (2020):

- Design of "elementary" test structures with CERN
- Design of 2 chips featuring arrays of 15x15 μm² & 25x25 μm² pixels with rolling shutter readout & analog output.

16

- Grouped submssion sent to TowerJazz in Dec. '20
- Preparing for tests anticipated to start in Summer '21

Block diagram of 65 nm reticle

WP7 Sensor R&D, next steps

MIMOSIS-1 => Pixel and EPI selection

- Irradiations: Ionising & non-ionising, SEE
- Beam tests at DESY (June, t.b.c), CERN (July?)
 - determine ϵ_{det} and σ_{sp} vs. Discri. Threshold and V_{dep} for each Epi profile as a function of TID, NIEL, ...
- \Rightarrow Find optimum combination, adapted to growing integ. dose.

MIMOSIS-1 => MIMOSIS-2:

- MIMOSIS-2 = MIMOSIS-1 complemented with:
 - sparse data scan, full triple vote logic
 - > optimized pixel & FE architecture accounting for MIMOSIS-1 results.
- Submission to foundry foreseen in October '21

65 nm Exploration:

- Lab. tests of 2020 prototypes starting in Summer '21
- Beam tests (with CERN coll.) toward end '21 early '22
- Design of prototypes for MLR2 submission (end '21?)
 => prominent goal: stitching & spatial resolution (aligned with goals of ALICE-ITS3 rather than of EP R&D)

17

Future stitched sensor layout

Status at DESY ...

Integrate CREMAPS to EUDET telescope.

- Hosts beam test of MIMOSIS-1 (June '20).
 ⇒ Obtain first running experience.
- Discussions on interfaces started.

...and INR NASU

Next step (Fall '21) - Design of a common, light and scalable DAQ system for CREMAPS.

WP7 Sensor integration: Universal test system

Idea: Need to test sensors

- On PCB (reference).
- On light carrer (e.g. mCBM)
- On wafer (for mass production).

Approach: build board with adapters to.

- Commercial FPC
- Ultra-light FPC
- Probe card
- \Rightarrow Use identical electronic chain.
- \Rightarrow Direct comparison of measurements.

Status:

Board design started.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072.

19

Fair ssi

GOETHE

FRANKFURT AM MAIN

WP7 Sensor Integration in Fixed Target Geometry: envisaged work program

CRETEL-1

- ~9 cm² telescope plane.
- Double sided integration.
- Simple materials.
- $\sim 0.1 \% X_0$ in active area.
- Possible application: EUDET

CRETEL-2 = CRETEL-1 plus:

- Carbon based support.
- Vacuum compatibe.
- ~0.3% X₀
- Possible application: mCBM

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 871072.

- Large acceptance.
- < 0.5% X₀ (additional cables).
- Base for fixed target tracking station.
- Synergies: CBM MVD.

Detector School at Budker Institut BINP being organized and planned for July 4 – 15, 2022

22

WP7 Workprogram on Detectors

- Neutron- and CMOS-Pixel communities are individually progressing well
- So far very limited interchange due to COVID-19 \rightarrow hope this to improve
- Summer School on Detectors will be important for networking and for fostering young scientists into the field, but needed to be postponed to July 4 – 15, 2022 (12 days) due to COVID-19. (Task 7.4)
- Teams will appreciate program extension by 6 months to make up for limitations

