2AInL

The idea

14

12

10

FCC-hh Simulation (Delphes)

llllllllIIIIIIIIIIIIIIIIIIITJT1ITT11[I1:TITTTT

0 Vs = 100 TeV —— Stat. only N
— — 8/5=8,B=1% —
[L=30ab’ —— 8/S = 8,/B = 3% i

o Source]
' HH — bb4l

| | | 1]
0.6 07 08 09 1 11 1.2 13 1.4 15
K, =M\ /A

obs” " "SM

Study Higgs potential through self coupling A
measurement with di-Higgs production at the FCC-hh
o 20 x better precision than HL-LHC
Some decay channels studied extensively already, for
example HH->bbZZ- bb4l
o Small background, simple event selection
o Expected precision 15-24%, for 1-3% systematic
uncertainty on bkg and signal
What about higher BR channels HH->bbZZ-bbllvv,
HH->bbZZ- bb4v or HH>bbWW?
o Draw conclusions about MET reconstruction in
the face of extremely high pile-up

Now O(10) 0(100) 0(1000) Future

LHC HL-LHC FCC-hh

https://cds.cern.ch/record/2642471/files/CERN-ACC-2018-0045.pdf

First distributions

leptons (= electrons and muons) Muon pT > 20 GeV Missing transverse energy
5 n_leps G pT_muons_sel - MET
: 5000?) Entries 10000 | & 140— Entries 3084| € C Entries 10000
H P Mean 09308 :>j B Mean 6958| £ B Mean 1255
! - StdDev 1.072 L Sswpev st91] W 1401 StdDev 9111
- 120— B
4000— r 120F
C 100(C
L L 100
3000— = D
N 80— L
B i 80y
- —— 4 __
2000~ o -
B 40— a0l
1000(— B [
L 1 20? 20—
Oilll||||llllllll|llllll||||1llllllllllll\lllllllll O_IIJlllllllllJl 071\\\‘Illlll\\\‘IIII‘\\\\'IIII‘\\\\ Tl AMMM
0 05 1 15 2 25 3 35 4 45 5 0 50 100 150 200 250 300 350 400 4_-|_559|em§90 0 50 100 150 200 250 300 350 400 450 mggo
leptons muons ET

e Started to study HH->bbZZ(leptonic) events, samples generated with Delphes (by Clement)
o pp-collisions at 100 GeV
o Tester with 10k events
e Working on: dilepton mass, filter events by number of neutrinos, compare pT neutrinos to MET, ...

The software

e Using the FCCAnalyses software framework

o "Isacommon tool for analyzing large amount of data using RootDataFrame

and produce flat ntuple" - Clement's slides
e Framework structure:

o (C++"analyzers" for reading the EDM4HEP format events, making them
suitable for RDataFrame, implementing common functions for e.g. accessing a
reconstructed or generated particle's pT etc.

o Python interface to write the RDataFrame based specific analysis code, i.e.
input/output files, defining event/object selections, filling and writing branches
to ntuple

m The eventloop is "hidden" by the RDataFrame syntax, and calculation of
(potentially complex) variables are "hidden" in the common C++ code

m Each usecase (= physics analysis) defines its own analysis.py class, having
several examples to run is therefore simple

m The python files become then more like elaborate config files, in a way

https://github.com/HEP-FCC/FCCAnalyses
https://indico.cern.ch/event/982690/contributions/4138504/attachments/2162441/3648904/FCCAnalyses_clement.pdf

The software

e Using the FCCAnalyses software framework

o "Isacommon tool for analyzing large amount of data using RootDataFrame

and produce flat ntuple" - Clement's slides
e Framework structure:

o (C++"analyzers" for reading the EDM4HEP format events, making them
suitable for RDataFrame, implementing common functions for e.g. accessing a
reconstructed or generated particle's pT etc.

o Python interface to write the RDataFrame based specific analysis code, i.e.
input/output files, defining event/object selections, filling and writing branches
to ntuple

m The eventloop is "hidden" by the RDataFrame syntax, and calculation of
(potentially complex) variables are "hidden" in the common C++ code

m Each usecase (= physics analysis) defines its own analysis.py class, having
several examples to run is therefore simple

m The python files become then more like elaborate config files, in a way

https://github.com/HEP-FCC/FCCAnalyses
https://indico.cern.ch/event/982690/contributions/4138504/attachments/2162441/3648904/FCCAnalyses_clement.pdf

Example analysis class from official git repo

e Analysis.py can be run standalone
on (one or a few) input files
i Tt el Tt b, wcaT: e Build full analysis code around it,
Tt i e that implements pre-/final event
e selection and can run over (long) list
of input files/different processes (e.g.

self.df = ROOT.RDataFrame("events", inputlist) S|gna| and background)

print (" done")

class analysis():

ROOT.ROOT.EnableImplicitMT(ncpu)

def run(self):

Select objects: Jets with pT > 50 GeV

df2 = (self.df
.Define("selected_jets", "selRP_pT(50.)(Jet)")
.Define("jet_pT", "getRP_pt(Jet)")

.Define("seljet_pT", "getRP_pt(selected_jets)") Deﬁne Variables: pTS of (Se|ected) jets

in the event - note: returns a vector!
)

branchList = ROOT.vector('string')()

branchiane 1 | Writing the ntuple: Specify which
vseljet_pT, branches to add

1:
branchList.push_back(branchName)

df2.Snapshot("events", self.outname, branchList)

Some thoughts

e Advantage of the C++ analyzers + python structure over directly analysing k4SimDelphes
output files with e.g. simple python event loop ?
o Speed?
o Implementation that makes Reco-MC links work with RDataFrame ?
e Some problems setting up
o Gitrepo version did not work out of the box
o For running the examples input files come from eos, but the yaml files to load them
live in a private afs directory (need to request access)
o Example code makes assumptions on from where you execute the .py code and will
produce error if you deviate from that
o Documentation is rather terse
m Structure not super intuitive (at least to me)
e Other concerns:
o Everything technical is hidden away (good for analysers, but perhaps not what we
intend), e.g. only have the final samples, no Delphes cards etc.
o RDataframe structure makes it harder to debug the physics side?
m E.g. not quickly possible to print 4vec of electrons+muons in an event to test

calculation of a more complex variable like dielectron mass because event loop
is hidden ?

