
The idea
● Study Higgs potential through self coupling 𝝺

measurement with di-Higgs production at the FCC-hh
○ 20 x better precision than HL-LHC

● Some decay channels studied extensively already, for
example HH→bbZZ→ bb4l
○ Small background, simple event selection
○ Expected precision 15-24%, for 1-3% systematic

uncertainty on bkg and signal
● What about higher BR channels HH→bbZZ→bbllvv,

HH→bbZZ→ bb4v or HH→bbWW?
○ Draw conclusions about MET reconstruction in

the face of extremely high pile-up

[Source]

O(10) O(100) O(1000)Now

LHC HL-LHC FCC-hh

Future

https://cds.cern.ch/record/2642471/files/CERN-ACC-2018-0045.pdf

First distributions

● Started to study HH→bbZZ(leptonic) events, samples generated with Delphes (by Clement)
○ pp-collisions at 100 GeV
○ Tester with 10k events

● Working on: dilepton mass, filter events by number of neutrinos, compare pT neutrinos to MET, ...

leptons (= electrons and muons) Muon pT > 20 GeV Missing transverse energy

The software
● Using the FCCAnalyses software framework

○ "Is a common tool for analyzing large amount of data using RootDataFrame
and produce flat ntuple" - Clement's slides

● Framework structure:
○ C++ "analyzers" for reading the EDM4HEP format events, making them

suitable for RDataFrame, implementing common functions for e.g. accessing a
reconstructed or generated particle's pT etc.

○ Python interface to write the RDataFrame based specific analysis code, i.e.
input/output files, defining event/object selections, filling and writing branches
to ntuple
■ The event loop is "hidden" by the RDataFrame syntax, and calculation of

(potentially complex) variables are "hidden" in the common C++ code
■ Each usecase (= physics analysis) defines its own analysis.py class, having

several examples to run is therefore simple
■ The python files become then more like elaborate config files, in a way

https://github.com/HEP-FCC/FCCAnalyses
https://indico.cern.ch/event/982690/contributions/4138504/attachments/2162441/3648904/FCCAnalyses_clement.pdf

The software
● Using the FCCAnalyses software framework

○ "Is a common tool for analyzing large amount of data using RootDataFrame
and produce flat ntuple" - Clement's slides

● Framework structure:
○ C++ "analyzers" for reading the EDM4HEP format events, making them

suitable for RDataFrame, implementing common functions for e.g. accessing a
reconstructed or generated particle's pT etc.

○ Python interface to write the RDataFrame based specific analysis code, i.e.
input/output files, defining event/object selections, filling and writing branches
to ntuple
■ The event loop is "hidden" by the RDataFrame syntax, and calculation of

(potentially complex) variables are "hidden" in the common C++ code
■ Each usecase (= physics analysis) defines its own analysis.py class, having

several examples to run is therefore simple
■ The python files become then more like elaborate config files, in a way

https://github.com/HEP-FCC/FCCAnalyses
https://indico.cern.ch/event/982690/contributions/4138504/attachments/2162441/3648904/FCCAnalyses_clement.pdf

Example analysis class from official git repo

Select objects: Jets with pT > 50 GeV

Define variables: pTs of (selected) jets
in the event - note: returns a vector!

Writing the ntuple: Specify which
branches to add

● Analysis.py can be run standalone
on (one or a few) input files

● Build full analysis code around it,
that implements pre-/final event
selection and can run over (long) list
of input files/different processes (e.g.
signal and background)

Some thoughts
● Advantage of the C++ analyzers + python structure over directly analysing k4SimDelphes

output files with e.g. simple python event loop ?
○ Speed ?
○ Implementation that makes Reco-MC links work with RDataFrame ?

● Some problems setting up
○ Git repo version did not work out of the box
○ For running the examples input files come from eos, but the yaml files to load them

live in a private afs directory (need to request access)
○ Example code makes assumptions on from where you execute the .py code and will

produce error if you deviate from that
○ Documentation is rather terse

■ Structure not super intuitive (at least to me)
● Other concerns:

○ Everything technical is hidden away (good for analysers, but perhaps not what we
intend), e.g. only have the final samples, no Delphes cards etc.

○ RDataframe structure makes it harder to debug the physics side?
■ E.g. not quickly possible to print 4vec of electrons+muons in an event to test

calculation of a more complex variable like dielectron mass because event loop
is hidden ?

