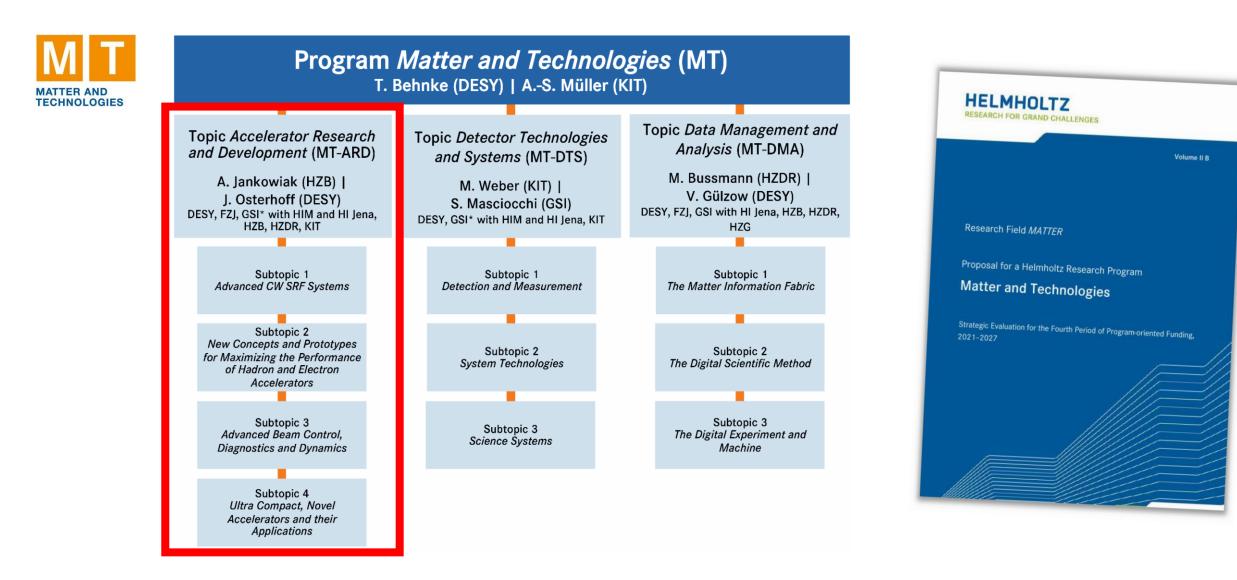
Welcome!

DESY. Accelerator R&D Activities

MT ARD ST3 Workshop (Virtual) Advanced beam controls, beam diagnostics and beam dynamics 29 September 2021

Prof. Dr. Wim Leemans Director Accelerator Division DESY


HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Accelerators - Motors for Discovery and Innovation

The MT-ARD program is of central importance in POF IV

The MT-ARD program is of central importance in POF IV

Accelerator scientists push the limits of today's technology in a research network of various Helmholtz centers and institutes, eleven universities, two Max-Planck institutes, and the Max-Born institute.

Helmholtz Centres: DESY, FZJ, GSI, HZB, HZDR, KIT

German institutes and universities involved in the research programme:

Helmholtz-Institute Jena (HIJ) und Mainz (HIM), Humboldt Universität zu Berlin, Universität Bonn, Technische Universität Darmstadt, Technische Universität Dortmund, Universität Düsseldorf, Johann-Wolfgang-Goethe-Universität Frankfurt, Universität Hamburg, Universität Mainz, Ludwig-Maximilians-Universität München, Universität Rostock, Universität Wuppertal, Max-Planck-Institut für Quantenoptik Garching, Max-Planck-Institut für Physik München, Max-**Born-Institut Berlin** 3

A world-leading accelerator lab

DESY.

DESY's mission

At DESY we have a unique combination of analytical tools

Brilliant X-rays, intense electron beams

PETRA IV. X-ray microscope for chemical, biological and physical processes

Scientific excellence in X-ray Analytics to address global challenges

PETRA IV.

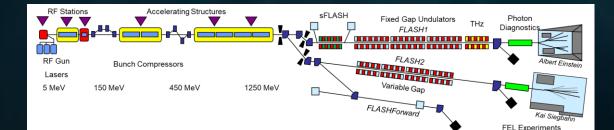
CDR

Unprecedented beam parameters TDR in progress

- > New machine 2.3 km length
- > 100-times higher intensity
- > 100-times faster experiments
- > Experiments in situ und operando

Development of Photon Science user facilities

- Sustainability as focus:
 - > Hybrid magnets
 - Waste heat recuperation
 - > High efficiency RF systems, ...


FLASH2020+ Upgrade

FLASH will be kept at the forefront of soft X-ray FEL facilities for another decade

- Provide seeding to users
- Higher photon energies and polarization control
- Optimized operation modes in the two FLASH beamlines

Development of Photon Science user facilities

Upgrade of the European XFEL

DESY conducts R&D for XFEL, supported by operation funds of European XFEL GmbH

 Strong link of ARD-SRF to XFEL – orientation towards strategic goal of CW upgrade of XFEL linac

Development of Photon Science user facilities Other R&D items towards improvement of the facility's performance include advanced FEL concepts, advanced beam controls, feedback systems and automatization

We are developing technology to further strengthen and secure **European XFEL's future Upgrade:** More beamlines (2nd fan, SASE4/5)

Improve present days operation and add 'small' upgrades

Autonomous accelerator and enhanced user ops

2025

Injector L1 L2 L3 V_{0, 1.3 GHz} ≈ 20 MV/m V₀≈ 20 MV/m V₀≈ 20 MV/m $V_0 = 7.3 \text{ MV/m}$ $K_{SASE1/2} = 3.9 - 1.65$ Φ_{1.3 GHz} ≈ 20° Φ ≈ 28° Φ ≈ 22° $\Phi = 0^{\circ}$ V_{0, 3.9 GHz} ≈ 10 MV/m ASE3 = 9-4 Φ_{1.3 GHz} ≈ 190 2 Modul LH, Dogleg, BC0 BC1 BC2 Collimation Gun 1.3 GHz R₅₆ = -150 to -30 R₅₆ = -120 to -50 $R_{56} = -80$ to -20 $R_{56} = 0$ 130 MeV 7.5 GeV 6 MeV 2.2 GeV 500 MeV

CW operation

Soft x-ray ops at EuXFEL

2030

202

The SRF R&D community goes continuous wave

DESY SRF R&D strongly supports a further developed TESLA technology

- The European XFEL R&D efforts aim for technology
 development
- The DESY Accelerator Research and Development (ARD) program investigates more fundamental questions related to SRF CW performance
- DESY activities include
 - SRF gun development / CW injectors
 - CW linac design: Niobium material / cavities / RF power couplers / module design & operation
 - Assembly of 1+ accelerator module per year
 - We profit from our involvement in and support of CW projects under construction

several generations of SRF gun prototypes

investigation of ESS and LCLS-II HE cavities

European

production of Large Grain material cavities

long pulse / CW operation of slightly modified XFEL type accelerator modules

We are developing new operational modes for our accelerators

Autonomous accelerator operation: Leverage strengths of Helmholtz, partner universities and industry to provide tailored solutions

BC2

> Data acquisition and analysis pipeline

A2

> Fault diagnosis and prevention

BC0

Intelligent control algorithms for accelerator operation

Helmholtz institutes: various projects (ARD, DMA)

BC1

- > SLAC: HIR³X
- CERN: simulation interface for ML
- ESS: Alarms, data sharing, fault diagnosis and protection

A7 ... A24 A25

DESY.

((() European XFEL

DESY. Smaller scale facilities provide versatile platforms for accelerator development and applications

Facilities offer complementary capabilities

PITZ

Energy: 22 MeV

Available: starting early 2022 for high repetition rate experiments

Upgrade: towards 250 MeV foreseen in 2026-2027 time frame

Application:

Defining optimum beam parameters, tumour painting and microbeams

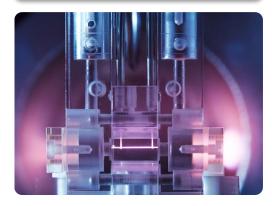
ARES

Energy: 50-160 MeV, ultra-stable, towards single digit femtosecond bunches

Available: starting mid 2022 for up to 50 Hz experiments

Application:

Radiation biology Autonomous accelerators Novel accelerator structure testing


REGAE

Energy: 3.6 MeV

Applications: Ultrafast electron diffraction (UED)

For **low energy** radiation biology (e.g. brachytherapy)

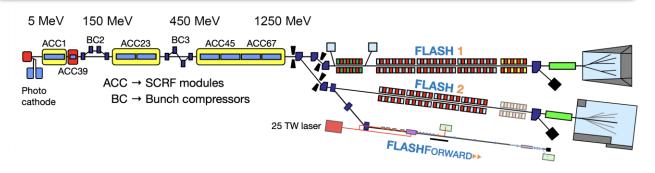
Plasma accelerators

Energy: 1-400 MeV

Additional information: Offers compactness and mobility

Application: For ultra-short bunches

DESY. focuses its R&D on high-power plasma accelerators


Our detailed technology roadmap is based on two unique infrastructures

KALDERA – kW, kHz laser driver **SINBAD ATHENA** KALDERA Laser Lab LUX II tunnel - kHz LPA

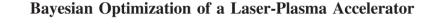
Science case

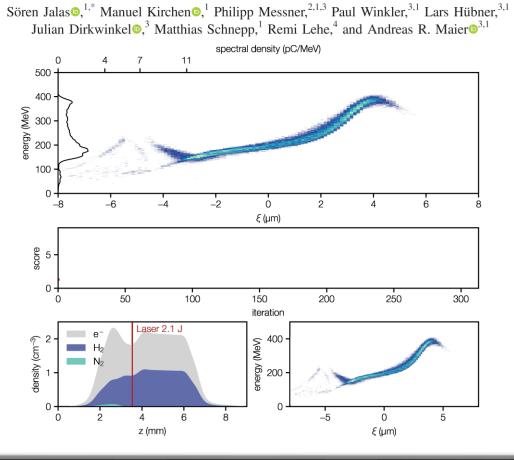
- 100 TW-class laser @ kHz-level rep-rate
- active stabilization, feedback and ML/AI
- FEL-quality electron beams

FLASHForward - 10 kW beam driver

- ~10 kW avg. power, MHz rate acc. based on ILC/XFEL tech.
- Advanced FEL-user facility feedback and feedforward systems

Goal: demonstrate a self-consistent **plasma accelerator** stage with **high efficiency**, **high quality**, and **high average power**




29 hours continuous operation and artificial intelligence for laser-plasma accelerator self-tuning

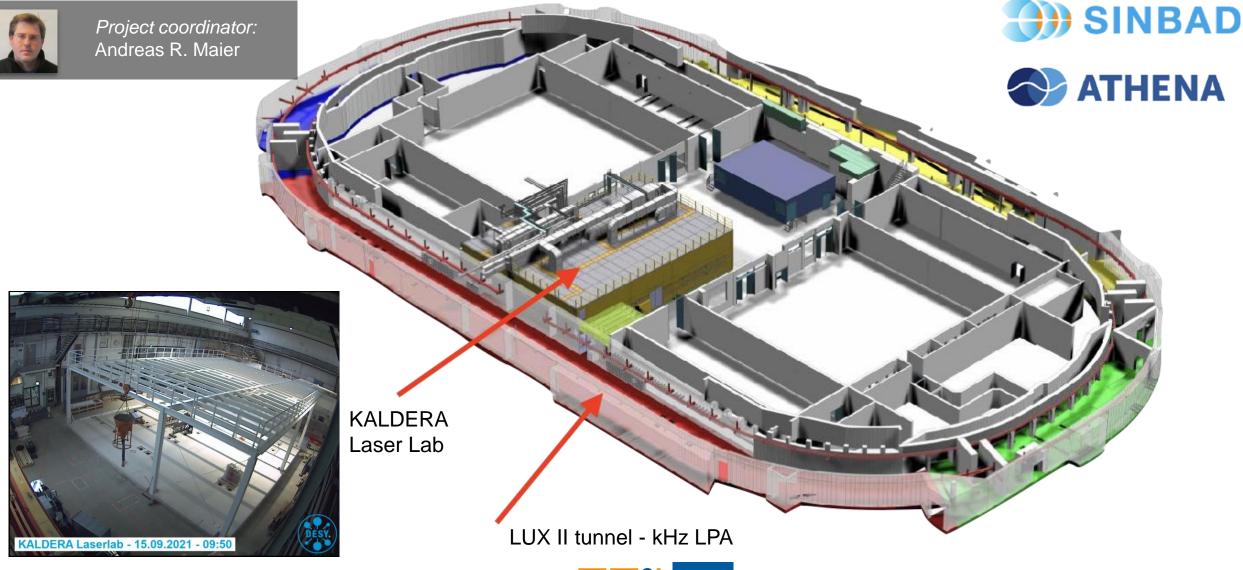
ARI

PHYSICAL REVIEW LETTERS 126, 104801 (2021)

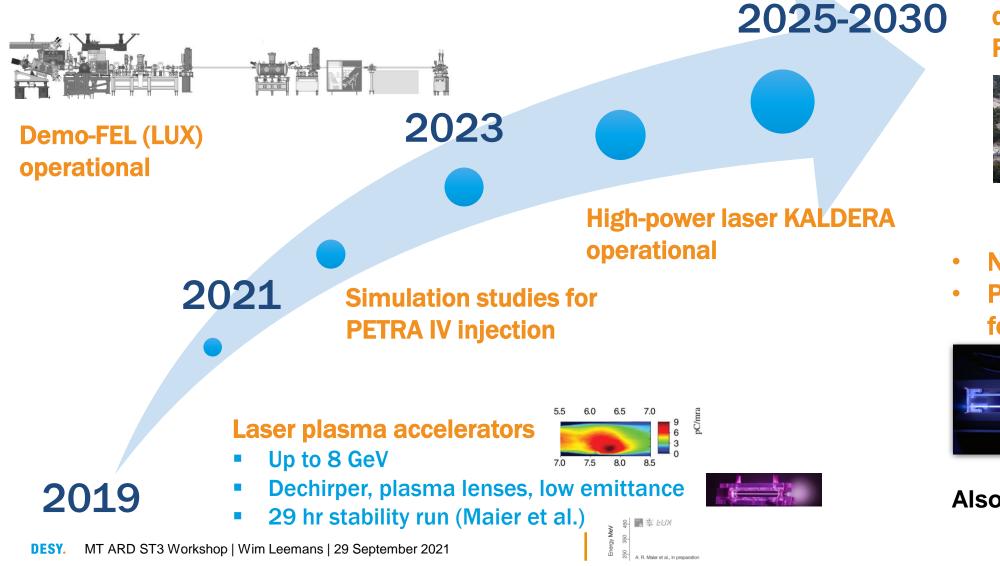
Bayesian optimization

PHYSICAL REVIEW LETTERS 126, 174801 (2021)

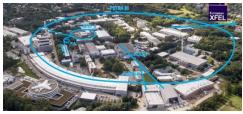
Optimal beam loading

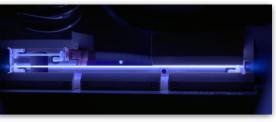

Optimal Beam Loading in a Laser-Plasma Accelerator

Manuel Kirchen[©],^{1,*} Sören Jalas[©],¹ Philipp Messner,^{2,1} Paul Winkler,^{3,1} Timo Eichner,¹ Lars Hübner,^{3,1} Thomas Hülsenbusch,^{3,1} Laurids Jeppe[©],¹ Trupen Parikh,³ Matthias Schnepp,¹ and Andreas R. Maier[©],^{3,1}

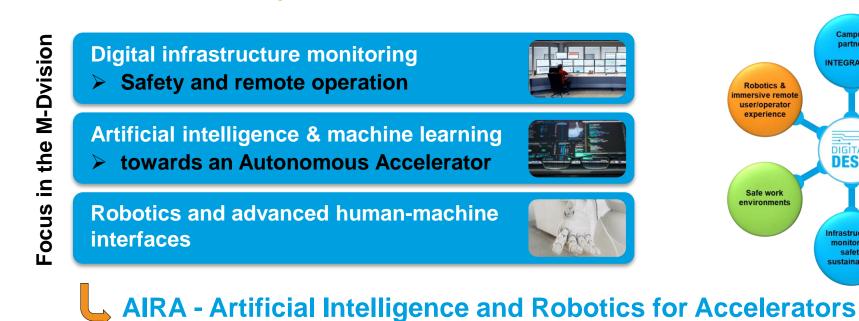

DESY. Is building a kW class, 100 TW laser -- KALDERA

Driver for kHz, GeV class electron beams and enabling high rep rate feedback and machine learning




Powering an FEL, injection into state-of-the-art storage ring, novel end-station modalities and >10 GeV plasma accelerator systems are central goals at DESY Stable, reliable generation of high quality beams to ensure machine availability

2nd Injection system development for PETRA IV: LPA-based


- Non-linear QED
- Plasma building block for collider

Also: medical initiatives

digitalDESY: We have a chance to capitalize on worldwide drive towards digitalization

With an initiative that spans all of DESY towards resilience and sustainability

2-stage workshop: first workshop was held from 5-8 July 2021

Workshop to explore the landscape of technologies, scout for top talent and funding opportunities

Л	Т	8	
4		A	

1st AIRA WORKSHOP 5-8 JULY 2021 Artificial Intelligence and Robotics for Accelerators		
AIRA-Worksho	р	
5-8 July 2021 virtual Europe/Berlin timezone		
Overview Timetable Registration	AIRA Workshop: Artificial Intelligence & Robotics 1 During the current pandemic, accelerator-based phr discovery of optimized vaccines and the exploration is now a sense of urgency to ensure that the direct	oton science facilities have played a key role in the n of potential medications. All around the world, there

are minimized by increasing resilience of our facilities and developing ever more robust and flexible

partner

INTEGRATION

DIGITAL

frastructur

nonitoring safety, sustainabili Mobile work

and modern

business

practices

Autonomous

accelerators, data

handling, AI/HPC

Robotics &

mmersive remot

user/operator

experience

Safe work

environments

17

Didita

digitalDESY.: Can we deploy remotely controlled robotassisted installation and user operations?

Develop a da Vinci-like robot for assisting users and technical staff

da Vinci Surgical Robot (Intuitive Inc., USA)

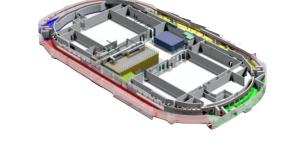
http://Shadowrobot.com/

VR-driven controls Human Machine Interface

Prof. F. Steinicke et al.

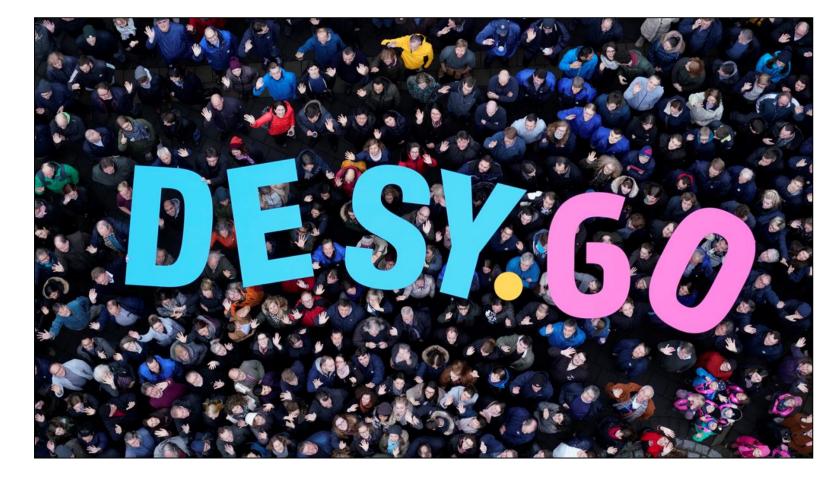
Many opportunities at DESY. in advanced beam controls, beam diagnostics and beam dynamics

- **PETRA IV.** focus on sustainability: hybrid magnets, waste heat recuperation, high efficiency RF systems
- FLASH2020+ seeding, polarization control and optimized operation modes
- **SRF development** CW capability at EuXFEL will boost the SRF technology
- PITZ, ARES and REGAE accelerator development and applications: UED and radiation biology
- Plasma R&D high power plasma accelerator development
- **digitalDESY** Digital monitoring, machine learning and autonomous accelerators, advanced robotics, new


ARC

human-machine interface modalities

DESY.



Thank you

Contact

Prof. Dr. Wim Leemans M-Division wim.leemans@desy.de

DESY. Deutsches Elektronen-Synchrotron www.desy.de