ARD-ST3 at ELBE \ HZDR ... Update

M. Chen, S. Kovalev, M. Kuntzsch, M. Klopf, C. Schneider, and P. Evtushenko (HZDR) S. Bielawski, C. Hanoun, S. Szwaj (Lille University)

OUTLINE

- Radiation Source ELBE (reminder)
- TELBE synchronization improvements
- FEL oscillators intensity stability; phase measurements
- EO time-stretch + phase diversity
- GigE Vision camera system for beam profile measurements
- Fast scanning slit emittance measurements / SRF gun

RADIATION SOURCE ELBE

- SRF linac-based, CW, 40 MeV, 1 mA (13 MHz); User facility (~ 6000 hour/year for users)
- two e- sources: #1 thermionic cathode DC gun, #2 SRF gun photocathode gun (~ 25 % of user ops.)
- ST3 relevance: ps, sub-ps bunch length, linac and SRF gun LLRF, table top lasers synchronization

THZ SOURCE – LAB LASERS SYNCHRONIZATION

MT

M. Kuntzsch, S. Kovalev

FEL STABILITY MEASUREMENTS

Better FEL pulse energy stability is desired by users

- Commissioned a new detector (Scontel Type 2)
 - superconducting transition edge hot electron bolometer
 - * high sensitivity NEP < $20 \times 10^{-12} W / \sqrt{Hz}$
 - * fast response 200 MHz BW
 - $_{\ast}$ covers full FEL tuning range (1.2 60 THz / 5 250 μ m)
- Non-invasive (pickoff) to FEL user operations
 - * 77.5mm x 30mm optical grade CVD diamond
 - set near Brewster's angle reflects 0.01% beam
 - ~ 5° C temp rise with 20 W beam power
- NI PXI ADC + LV spectrum analyzer program
 - * reduce signal bandwidth to improve digitization (LPF)
 - * synchronize ADC to ELBE 10 MHz clock
 - * 5 Hz FFT resolution
 - signal >1 mV with 100 nV noise

Single sideband spectrum at 13 MHz

P. Evtushenko, M. Klopf

FEL STABILITY MEASUREMENTS

Better FEL pulse energy stability is desired by users

- Commissioned a new detector (Scontel Type 2)
 - * superconducting transition edge hot electron bolometer
 - * high sensitivity NEP < $20 \times 10^{-12} W / \sqrt{Hz}$
 - fast response 200 MHz BW
 - $_{\ast}$ covers full FEL tuning range (1.2 60 THz / 5 250 μ m)
- ✤ Non-invasive (pickoff) to FEL user operations
 - * 77.5mm x 30mm optical grade CVD diamond
 - set near Brewster's angle reflects 0.01% beam
 - $\sim 5^{\circ}$ C temp rise with 20 W beam power
- NI PXI ADC + LV spectrum analyzer program
 - reduce signal bandwidth to improve digitization (LPF)
 - * synchronize ADC to ELBE 10 MHz clock
 - * 5 Hz FFT resolution
 - signal >1 mV with 100 nV noise

SUB-CYCLE TIME RESOLUTION WITH FEL OSCILLATORS

- ***** FEL oscillators are not CEP stable sources (due to optical cavity length detuning; needed because in undulator $v_z^{e^-} < c$ is large effect)
- This limits time resolution of experiments with FEL oscillators
- Now (2020-2021) it was demonstrated that phase resolved measurements are possible with FEL without CEP stability
- Can allow new classes of experiments with FIR FEL oscillators
- ※ Better FEL diagnostics

 2930
 Vit 41, No. 13 / July 1 2016 / Optics Letters
 Letter

 Optics Letters
 Letter

 Terahertz time-domain electro-optic measurements by femtosecond laser pulses with an edge-cut

I. E. ILYAKOV,^{1,*} G. KH. KITAEVA,² B. V. SHISHKIN,¹ AND R. A. AKHMEDZHANOV^{1,3}

S. Kovalev, M. Klopf, I. Ilyakov

SUB-CYCLE TIME RESOLUTION WITH FEL OSCILLATORS (DATA)

Tune 1 – large cavity detuning

- exponential front, Gaussian back
- * longer pulse
- * reduced spectral bandwidth

Tune 2 – near zero detuning

- » Gaussian pulse profile
- shorter pulse
- wider spectral bandwidth

FEL pulse model

S. Regensburger, et al., IEEE Trans. Terahertz Sci. Technol., **9**, 262 (2019)

For more: tutorial by Sergey Kovalev Friday, 9am

EO SAMPLING / TIME-STRETCH / PHASE DIVERSITY

FEL oscillators (FIR and MIR) operate with ps e- bunch length

- TELBE (THz superradiant undulator + CDR) operate with ~0.4 ps RMS bunch length
- <u>Exiting</u> bunch length measurements diagnostic –
 Martin-Puplett Interferometer (no spectral phase)
- <u>EO measurements</u> could be an improvement, but is very challenging with ELBE parameters for direct bunch (Coulomb) field measurements
 # low energy; # bunch charge 60 – 200 pC
- ※ <u>Single-shot</u> measurements big advantages
 # pulse length stability measurements
 # less affected by beam ⇔ laser jitter
 - Spectral decoding + time-stretch + phase diversity (Lille University Collaboration)
- Strategy: test setup(s) in TELBE user lab, transfer to accelerator vault
 ELBE + PhLAM Lab. Lille University

ELBE / Beam Profile / Beam Viewers

ELBE / Transverse Beam Profile Measurements

- X Analog cameras not available (almost)
- × Only one video channel
- Practically poor SNR
- W Upgrade: digital (Ethernet) GigE Vision system, and a set of new software tools
- 2/3 of beam-viewer converted to the new camera system
- Multiple video sources and client are supported
- New system provides on-line beam size and position measurements at ~ 20 Hz
- Provides a lot of high SNR data pathway to ML learning applications for better (easier) machine setup and beam dynamics understanding

FAST SLIT-SCAN EMITTANCE MEASUREMENTS / SRF GUN

Images processing time: ~100 images/min.

Deep leaning algorithms: convolutional neural network and auto-encoder network, are used to improve efficiency and accuracy in image processing.

Beamlet image Beamlet vertical projection original 20000 ML filter 15000 10000 5000 100 200 400 300 Simulation of the slit-scan measurements system, with the ML filters test

-0.5

-1.0

0.5

0.0

y/mm

1.0

Shuai Ma

Thank you

