
- 1. recent performance of GSI accelerator facility
 - parallel operation
 - ✤ availability
 - ✤ operation modes
 - ✤ beam parameters FAIR phase 0 user operation
 - status FAIR beam parameters
- 2. preparation for FAIR commissioning
 - ✤ goal
 - concept & planning strategy

Remark: Input of this slides is from the S.Reimann - Operation Manager and coordinator of FAIR commissioning.

GSI operation performance *parallel operation*

Parallel factor

experiments, served at the same time

average: 3.3 (in 2021) average: 2.3 (in 2020)

maximum: 6

very efficient use of available beamtime

 \diamond ion sources

 \diamond target stations

20.04.2021

picture by: Achim bloch-Späth

detailed beam time schedule of May 2021

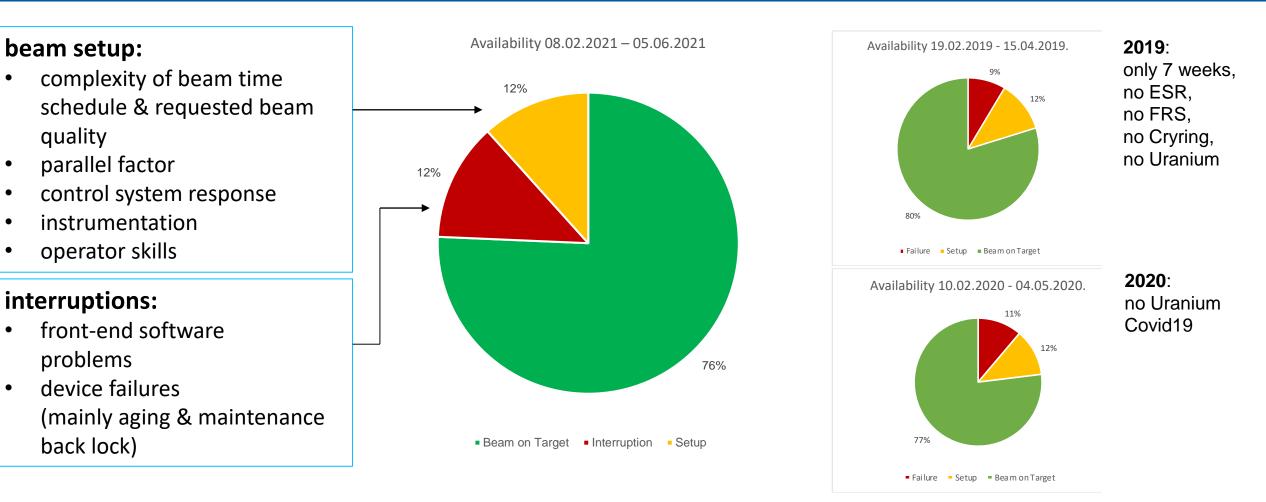
ΜΑΥ	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon
2021 v016	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
IS N	238	3-U				78	-Kr												124	l-Xe										107	7-Ag
IS S												ļ	50-Ti	i													197	'-Au			
ECR								12	2-C														4-H€	9							40-Ar UCW
MAZ																														-	
UNILAC				U 3 28	8 Ba	atar;	50-	Ti; X	8					U32	24 Gi	acop	po; !	5 0-T i	i; Y7						U	IMAT	; 197	7-Au;	: M1	-3	
UNILAC		"; 238- 11-3	U	324	Giac	oppo	o; 50	-Ti; Y	7	UB	IO; 1	L2-C,	X6		(raft-Be 50-Ti, X	ermuth; 7		U328	B Ba	atar;	50-	Гі; Х	8			UMA	T; 19	97-A	u; XC)	
UNILAC																		UN	ЛАТ;	50-T	ï; M	1-3									
UNILAC																															
SIS	S515; FRS-		SBI	10; 1	.2-C,	HTĄ	/M							S49	6 Zh	ang;	124 [.]	-Xe;	HFS				Г; 124- НТА	S514; 124-Xe; HTD	S494; 4- He; HTC	SMAT Xe; l		S494; 4- He; HTC	S514; 124-Xe; HTD		
SIS					3 Nocii 2-C; Hi							S48	9 Bag	noud	l; 124	l-Xe; l	нт								E1	27 Re Xe;	eifar FRS-		24-		
SIS			-															-													
ESR	E138 Cl	ESR- RY							Korten; r; ESR			12	2-C 3	+; E\$	SR										E1	27 Re Xe;	eifar FRS-		24-		
CRY	E138 Cl	ESR- RY			E1			nsky; -CRY		+;						E1	.53 E	Biela	; 06-	+; LO	C-CI	RY									

D. Severin

MT ARD ST3 Meeting, 29.9.-1.10.2021, Facility Status GSI/FAIR

GSI operation performance availability

٠


٠

٠

٠

٠

special achievements

- almost all operation modes are restored thanks to progress of control system retrofitting to FAIR standard
- full chain user-operation UNILAC-SIS18-ESR-Cryring established for heavy ions (Cryring commissioning well advanced)
- Uranium operation for users re-established after 5 years

2021 operation modes (new or re-established)

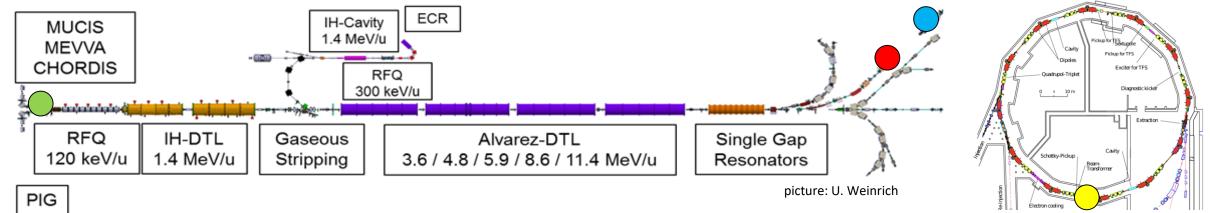
- Ion source stability improved \rightarrow longer lifetime, less interruptions
- Up to 4 ion species in parallel operation established
- Parallel operation of carbon and proton (high current, from one Methane source) established
- SIS18 remanence compensation function implemented to achieve a better parallel performance for SIS18 users
- SIS18 septum PS changed → voltage increased close to nominal value <=> nominal extraction angle → less losses during extraction @ rigidities > 12Tm
- New RF system allows SIS routine operation with reduced injection energy from UNILAC to highest possible extraction rigidity
- HEST beam-line-optics improved \rightarrow faster setup, better transmission (e.g. SIS18-HTD, ESR-Cryring)
- New beam path SIS18-FRS-HTM commissioned
- ESR bunch to bucket transfer established
- CRYRING@ESR: deceleration and fast extraction established

GSI nominal intensity *for standard user operation*

		UNILAC			SIS18			ESR		Cryring			
		max. rep.	charge	nominal average	max. rep. rate	charge	nominal intensity per	charge		stored	charge	nominal intensity per	
ion species	ion source	rate	state	particle current	(fast ext.)	state	cycle@extraction	state	energy/u	intensity	state	cycle @ incjection	
U-238	VARIS				0,5 Hz - 1 Hz	73+	2E+09	91+/92+	300-400 MeV	1E+08			
								91+/92+	40 MeV	4E+07			
								91+/92+	10 MeV	5E+06	91+/92+	1E+06	
Bi-209	VARIS				0,5 Hz - 1 Hz	68+	2E+09						
Pb-208	VARIS				0,5 Hz	67+	2E+09				78+	5E+06	
Au-197	VARIS	25 Hz*	26+	0,1 рµА	0,5 Hz - 1 Hz	65+	2E+09						
Xe-124	MUCIS				0,5 Hz - 1 Hz	48+	3E+09						
Xe-136	MUCIS				0,5 Hz - 1 Hz	48+	5E+08						
Ag-107	VARIS				0,5 Hz - 1 Hz	45+	2E+09				47+	5E+06	
Ti-50	PIG	50 Hz	12+	0,8 рµА	0,5 Hz - 1 Hz	22+	2E+08						
Ca-48	ECR	50 Hz	10+	0,8 рµА	0,5 Hz - 1 Hz	20+	5E+08						
Ar-40	MUCIS				0,5 Hz - 1 Hz	18+	3E+10						
Mg-24	Cryring ECR										1+	2E+06	
0-18	VARIS		3+		0,5 Hz - 1 Hz	8+	5E+10						
N-14	MUCIS				0,5 Hz - 1 Hz	7+	7E+10						
C-12	ECR	50 Hz	2+	2,4 рµА	0,5 Hz - 1 Hz	6+	4E+09						
	MUCIS (from CH3 molecule***)				0,5 Hz - 1 Hz	6+	4E+09						
	Cryring ECR										1+	2E+06	
H-1	MUCIS (from H3 molecule**)				0,5 Hz - 1 Hz	1+	1E+09						
	MUCIS (from CH3 molecule***)				0,5 Hz - 1 Hz	1+	8E+10						

* 5011z is possible only with exclusive operation mode

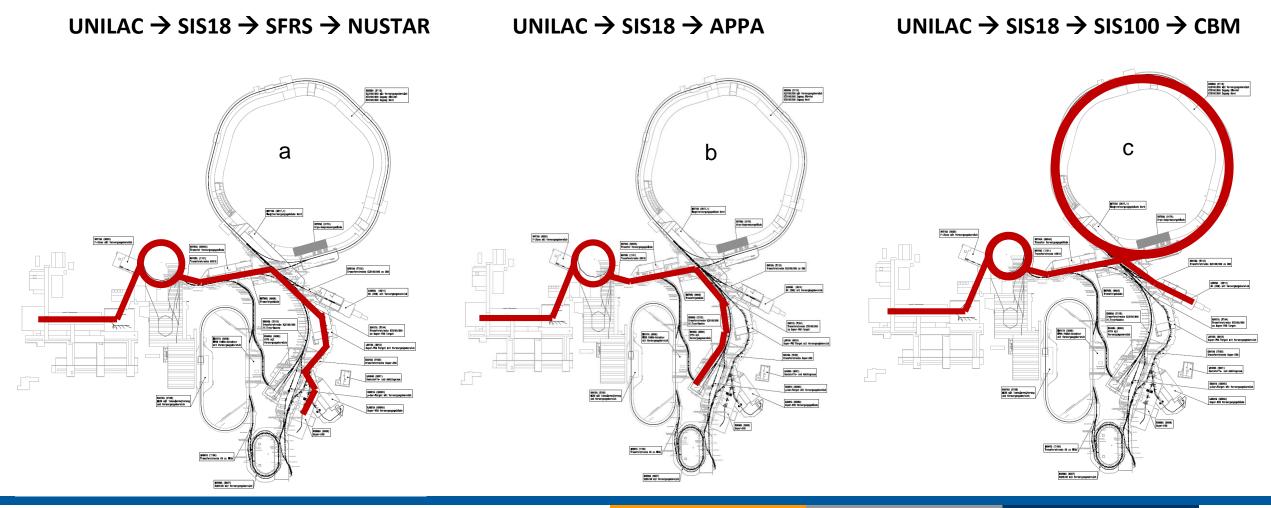
** in parallel operation mode with high MAZ and adopted synchronous phase (higher intensity possible only during exclusive proton operation)


*** C+H parallel high-current operation from molecule source

green: changes compared to the 2021 table

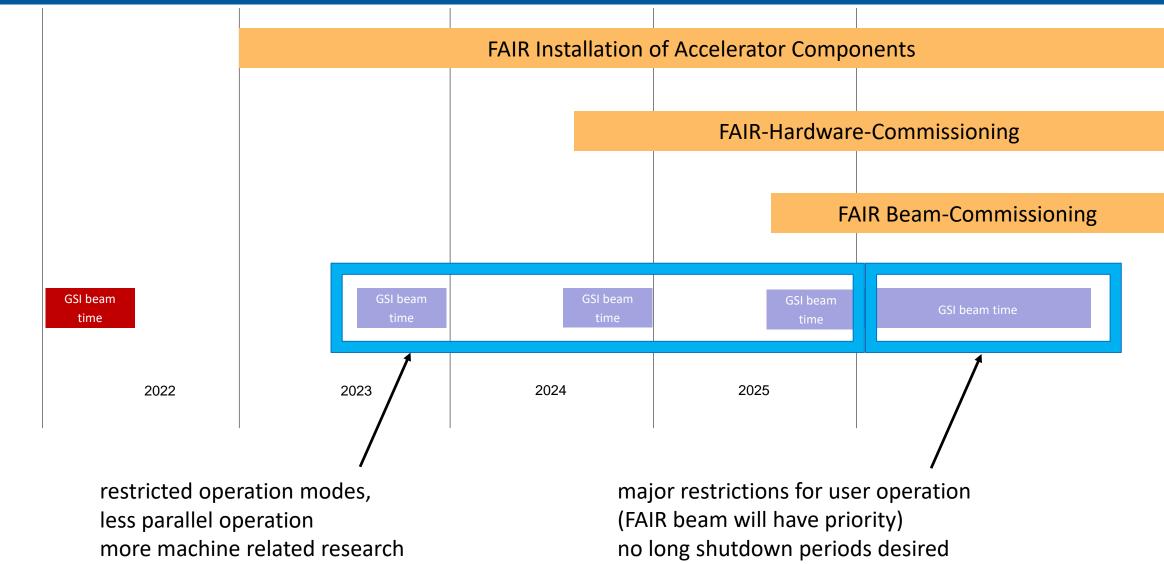
GSI performance as FAIR injector

Uranium operation



picture: M. Alhumaidi

	Current Transformer	Position	charge state	Current in user operation (or recent machine studies)	All time high	FAIR requirement [mA]
	UL5DT8	after ion source before RFQ	4+	$12 \pm 2 \text{ mA}$	15 mA (with 7-hole- extsystem)	30mA (20 with pulsed gas stripper)
	TK2DT4	before TK foil stripper	28+	$2.8 \pm 0.3 \text{mA}$	3.2 mA (est. 2012) ²	10 mA (30 SIS18 turns) 16 mA (16 SIS18 turns)
\bigcirc	TK3DT4	after TK foil stripper	73+	$1.4 \pm 0.1 \text{ mA}$	2.7 mA (2007 TK-end) 1.3 mA (est. 2010) ¹	1 mA (early physics) 2 mA (SIS18 => SFRS)
\bigcirc	S09DT1ML_inj S09DT1ML_flattop	SIS18 at injection SIS18 after acceleration	73+	3.0 ± 0.1 E9 particles 2.2 \pm 0.1 E9 particles	5.9 E9 (est. 2010) ¹ 4.5 E9 (est. 2010) ¹	5 E9 ppc (early physics) 1 E10 ppc (SIS18 => SFRS)
	S09DT1ML_inj S09DT1ML_flattop	SIS18 at injection SIS18 after acceleration	28+	1.7 E10 particles 0.6 E10 particles	4.2 E10 (est. 2012) ² 3.0 E10 (est. 2012) ²	5 E11 ppc (MSV)



FAIR commissioning

2021

integrated campus schedule

FAIR commissioning concept *4 commissioning phases*

inst.	4	#	commissioning stage	accelerators & transfer lines	detectors
Beam		1 M??)	local HW- commissioning	 local system tests in tunnel and supply areas control system not needed (only in limited aspects) media needed – temporary supply is sufficient 	 single detector tests tests of individual components install. service & controls
Commissioning without I		2 M??)	remote & system commissioning	 single system test (vertical system integration test) remote testing from MCR (sequences, checklists) control system integration of the system and timing is needed, TBI & media fully available from here 	 system tests (with HV, gas,) pre-test of DAQ system local control
Comm		3 ^{M11)}	integration	 (3.1) multi system tests & (3.2) full Dry-Runs control system and accelerator models for pilot beam scenarios fully available 	 full detector test and DAQ using cosmics
Commissioning		4 M12)	pilot beam commissioning	 commissioning with pilot beam, PAS available 	 commissioning with pilot beam
Comm					handover to operations
Beam			beam commission & early science	 operation with PCP-beam respectively status quo beam commissioning of advanced systems and complex operat 	ion modes / intensity ramp-up