

Longitudinal Beam Dynamics at cSTART

Markus Schwarz ARD-ST3 Workshop, 21/09/30

www.kit.edu

Outline

2

Basics of longitudinal beam dynamics cSTART

Acknowledgements

A. Bernhard, E. Blomley, T. Boltz, M. Brosi, E. Bründermann, S. Funkner, J. Gethmann, D. El Khechen, M. Hagelstein, A. Kuzmin, S. Maier, A. Malygin, Y.-L. Mathis, W. Mexner, A. Mochihashi, M. Nabinger, M. J. Nasse, G. Niehues, A. Papash, R. Ruprecht, A. Santamaria Garcia, J. Schäfer, M. Schuh, T. Schmelzer, P. Schreiber, N. J. Smale, J. L. Steinmann, P. Wesolowski, C. Widmann, C. Xu, and A.-S. Müller

STalks at ARD-ST3 meeting

Karlsruhe Institute of Technology

E.O.M.: Arrival Time

$$\dot{\Delta t} = \frac{1}{1 - \eta(\Delta E)} - 1 \simeq \frac{\eta_0}{\beta^2 E_d} \Delta E + \frac{\eta_0^2 + \eta_1}{(\beta^2 E_d)^2} \Delta E^2 + \frac{\eta_0^3 + 2\eta_0 \eta_1 + \eta_2}{(\beta^2 E_d)^3} \Delta E^3$$

Particle gains or looses energy due to • Electric fields in RF cavity $V_{RF}(\Delta t) = V \sin(\omega_{RF}\Delta t + \phi_{RF})$

2021

E.O.M.: Energy

- Synchrotron radiation
- Interaction with surroundings and other particles

$$\dot{\Delta E} = \frac{q}{T_d} \left[V_{RF}(\Delta t) + V_{ind}(\Delta t) \right] - \frac{U_0}{T_d}$$

Simulation Techniques

Macro-particle tracking

- "easy to learn, difficult to master"
- Can require many macro-particles

e.g. <u>BLonD</u>

- Vlasov-Fokker-Planck equation
 - Non-trivial to implement
 - Can be faster than MP tracking
 - e.g. Inovesa [P. Schönfeldt et al., PRAB 20, 030704 (2017)]

RF-bucket

Hamiltonian

 $H(\Delta t, \Delta E) \simeq \frac{\eta_0}{2\beta^2 E_d} \Delta E^2 + \frac{qV}{2\pi h} \cos(\omega_{rf} \Delta t)$

- Bound motion around stable fix points ⇒ RF-bucket
- Synchrotron frequency

 $\omega_{s0} = \sqrt{\frac{-2\pi h \, qV \, \eta_d \cos \phi_s}{T_d^2 \, \beta^2 E_d}}$

Separatrix bounds stable region

α-Bucket

- \blacksquare Higher-orders of α
- Stable regions also for $\Delta E \neq 0$
- Relevant when $\eta_0 \simeq 0$

M. Ries et al., IPAC'11, TUOAB02

[M. Attal et al., PRAB 16, 054001 (2013)]

A. Papash et al., Adv Theo Comp Phy 4, pp. 148 (2021)

(incoherent) Synchrotron Radiation

Energy loss $U_0 \propto q^2 \gamma^4 / r_{bend}$

Radiation damping vs quantum excitation \Rightarrow equilibrium reach in $\tau \propto T_d E_d / U_0$

Machine	Energy	Particle	Energy loss	Damping time
LHC	7 TeV	Proton	7 keV	7 h
KARA	2.5 GeV	Electron	621 keV	1.5 ms
KARA	0.5 GeV	Electron	1 keV	183 ms
cSTART	50 MeV	Electron	0.4 eV	16 s

8

September 30, 2021 Markus Schwarz – Longitudinal Beam Dynamics at cSTART

Wake Fields

9

EM fields created by changes in surroundings

Impedance chamber: STalk S. Maier

Coherent Synchrotron Radiation (CSR)

• Wavelength > emitting structure \Rightarrow intensity $\propto N^2$

10

The cSTART Project

- Develop infrastructure and technology for a compact LWFA-based light source
- Very-Large Acceptance compact Storage Ring to inject and store sub-ps short electron bunches.

A. Papash et al., IPAC'21, MOPAB035

- Two injectors
 - linac-based FLUTE
 - LWFA

S. Hillenbrand et al., NIM A 740, 2014

E. Panofski et al., IPAC'21, TUPAB163

Basic Parameters

Ring

Parameter	Value	Unit	
Nominal	50	MeV	
energy			
Injection rate	10	Hz	
Revolution time	144	ns	
Revolution frequency	6.9	MHz	
α_0 (nominal)	1.8x10 ⁻²	1	
SR damping time	16	S	

Bunch

Synchrotron Radiation

Parameter	Value	Unit	Parameter	Value	Unit
Bunch charge	11000	рС	critical frequency	53	THz
Bunch length	3300	μm	Energy loss	0.4	eV
Bunch	101000	fs	(incoherent)		
duration			Energy loss	160	keV
Energy spread	10 ⁻³ 10 ⁻²	1	(coherent, 1pC, 20 fs)		

Diagnostics: STalk D. El Khechen

Synchrotron Radiation Properties

- **Radiation spectrum** $\propto \Re Z$
- CSR intensity scales with overlap of *RZ* and bunch form factor
- Average energy loss per electron

 $\overline{U} = 2e^2 N_e \int_0^\infty \Re Z(f) |\Lambda(f)|^2 df$

Coherent SR: 160 keV (1pC, 20 fs)
Incoherent SR: 0.4 eV

Simulated Beam Dynamics

- Initial Gaussian bunch (1 pC)
 - $\sigma_{STD} = 20$ fs, $\sigma_{\Delta E} = 50$ keV
- Strong CSR
 - ⇒ energy loss ~ 160 keV
 - \Rightarrow dipole oscillation
- Energy spread
 - \Rightarrow bunch lengthening

Sub-ps bunch duration twice per synchrotron period

Summary

CSTART:

- Electron energy of 50 MeV ⇒ long damping time ~16 s
- Synchrotron radiation spectrum up to 53 THz
 ⇒ ultra-short bunches radiate completely coherent
- Emission of intense CSR
 - \Rightarrow significant energy loss and non-linear effects
- Sub-ps short bunch duration recovered periodically

Thank you for your attention!