

Demonstration of time-stretch Electrooptical sampling, with phase-diversity at the Radiation Source ELBE

PhLAM, Lille University, France:

Christelle HANOUN, Serge BIELAWSKI, Christophe SZWAJ, Eleonore ROUSSEL

ELBE, HZDR:

Pavel EVTUSHENKO, Christof SCHNEIDER, Anton RYHZHOV, Sergey KOVALEV

ARD ST3 Annual Meeting October 1, 2021

Single-shot THz pulse measurements: motivation and challenges

General motivations:

- Obtain information on bunch shapes
- Potentially: user applications (e.g., spectroscopy)

Requirements:

- Single-shot
- Sufficient temporal resolution/BW (ps/sub-ps range)
- High acquisition rate (MHz+) for a range of machines, e.g., Eu-XFEL, SOLEIL, KARA, and ELBE

In this talk: measurement of CDR THz pulses at ELBE

Content

- Single shot electro-optic sampling
- Spectrally decoded EO sampling
- Time stretch EO sampling
- Experiment at ELBE
- Time resolution limitation
- Phase diversity technique
- Time stretch electro-optic sampling with phase diversity Experiment at ELBE with phase diversity Results
- Conclusion and perspectives

Principle of single-shot electro-optic (EO) sampling using chirped laser pulses

- \succ The electric field modifies the birefringence of a crystal.
- ➤ The field-induced birefringence is probed using a laser pulse

Popular since the 80s: Near-field measurements Valdmanis, Mourou, Gabel, APL 41, 211, (1982)

October 1, 2021 ARD ST3 annual meeting

Spectrally decoded EO sampling, and the acquisition rate challenge

Commercial cameras: up to \approx 150 k lines/s

Option 1: KALYPSO project at KIT. Currently 4 Mf/s over 512 pixels.

First demonstration for THz pulses (table-top exp.): Jiang and Zhang, Appl. Phys. Lett. 72, 1945 (1998) First demonstration in the accelerator context: bunch shapes at FELIX [Wilke et al., PRL 88, 124801 (2002)] Novel design for speed (<200 fs) and sensitivity (fibered system): [Bernd Steffen et al., Proc. DIPAC09 TUPB42 (2009), RSI 91, 045123 (2020)]

October 1, 2021 ARD ST3 annual meeting

Option 2 (this work): Time stretch EO sampling

Main idea: Associate EO sampling with photonic time-stretch [B. Jalali team, Electronics Letters 34, 1081 (1998)]

First demonstration of THz time-stretch EO: [(PhLAM-SOLEIL coll.) Roussel et al. Sci. Rep. 5, 10330, 2015] KARA@KIT: Bielawski, S., Blomley, E., Brosi, M. et al. Scientific Reports 9, 10391 (2019). https://doi.org/10.1038/s41598-019-45024-2 (ongoing ANR-DFG collaboration projet between PhLAM, SOLEIL and KIT)

On the oscilloscope: replica of the THz pulse that is "temporally stretched" by a factor $M=1+\frac{L_2}{L_1}$ Following slides: L1 = 16 m and L2 = 4 km M \approx 242.

 \rightarrow 4.13 GHz on the oscilloscope corresponds to 1 THz at the input.

Experimental setup at ELBE: Time stretch EO sampling

Acquisition rate = 26.10⁶ traces/s

ELBE: Results

Recorded signal

0

2

October 1, 2021 ARD ST3 annual meeting

Time stretch EO measurements at ELBE

Stretched time [ns]

8

10

12

Time resolution & Bandwidth limitation

Simulation: Typical deformations observed for short THz pulses (40 fs-long laser pulse and ideal Pockels crystal)

Deconvolution using phase diversity

B and ϕ (unknown) are found by minimizing the reconstruction error: $\varepsilon^{2} = \int_{-\infty}^{+\infty} d\Omega \left(\left| Y_{1} - H_{1}X_{R} \right|^{2} + \left| Y_{2} - H_{2}X_{R} \right|^{2} \right)$

[Han, Boyraz & Jalali, IEEE Trans. Microwave Theory and Tech. 53, 1404 (2005)]

https://arxiv.org/pdf/2002.03782

Tests at PhLAM (Roussel et al. https://arxiv.org/abs/2002.03782)

Experimental setup at ELBE: Time stretch EO sampling with phase diversity

Acquisition rate = 26.10⁶ traces/s

Polarisation 1

Retrieved input signal

October 1, 2021

ARD ST3 annual meeting

ELBE: Results

October 1, 2021 ARD ST3 annual meeting

October 1, 2021

ARD ST3 annual meeting

ELBE: Results

Retrieved input THz signal at ELBE

Spectrum of the electron beam at ELBE

October 1, 2021 ARD ST3 annual meeting

October 1, 2021

ARD ST3 annual meeting

Conclusion and future perspectives

First test of time-stretch EO at ELBE:

- Tested on the CDR THz source (50 KHz rep. rate)
- Sufficient BW/temporal resolution using the Phase diversity technique
- Note: acquisition rate capability (26 MHz) much higher than the CDR source repetition rate

Robust and relatively compact setup (19" rack)

...and a 60 cmx20 cm breadboard

Conclusion and future perspectives

Other applications to, e.g., spectroscopy...?

ELBE control room

Fundings: CEMPI Labex, CNRS MOMEMTUM/METEOR, ULTRASYNC ANR-DFG

Additional steps for reconstructing the input signal

Transfer functions for the phase diversity technique

Key point: Interleave the transfer functions zeros Practically by using different crystal and waveplates orientations than the "classical" one.

