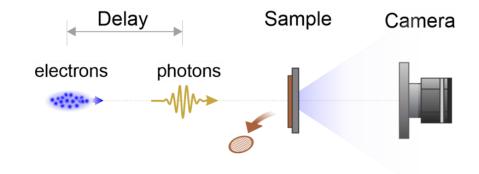
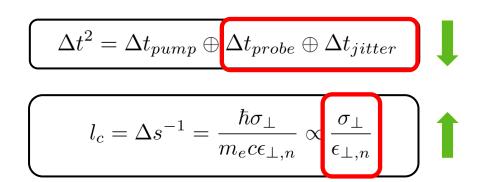


Time Resolved UED in Sealab Time resolution optimization with the SRF Photoinjector


September 30, 2021

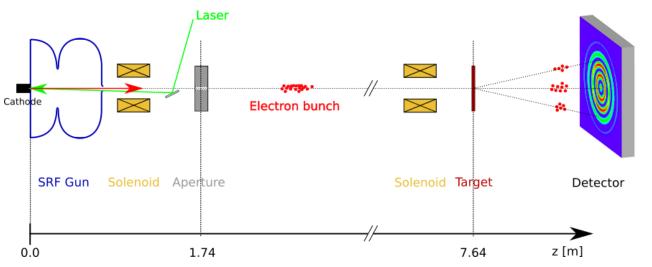
Beñat Alberdi, Ji-Gwang Hwang, Axel Neumann, Jens Voelker, Thorsten Kamps



Ultrafast Electron Diffraction

- •Ultra-fast Electron Diffraction (UED) can provide of real-time imaging of structural changes in atomic scales.
- •Pump photon pulse excites the target structure, while a consequent probe electron bunch generates the diffraction pattern.

•Temporal and spatial resolutions for UED are given by:

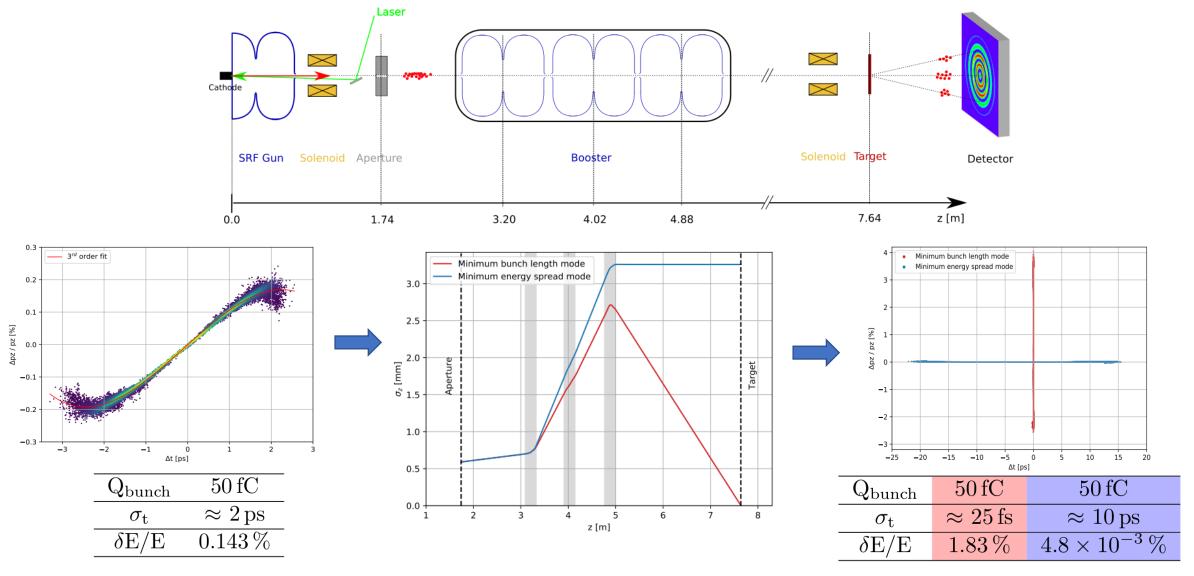


Lin, MF., Kochat, V., Krishnamoorthy, A. et al., Nat. Commun. 8, 1745 (2017).

Time Resolution for UED

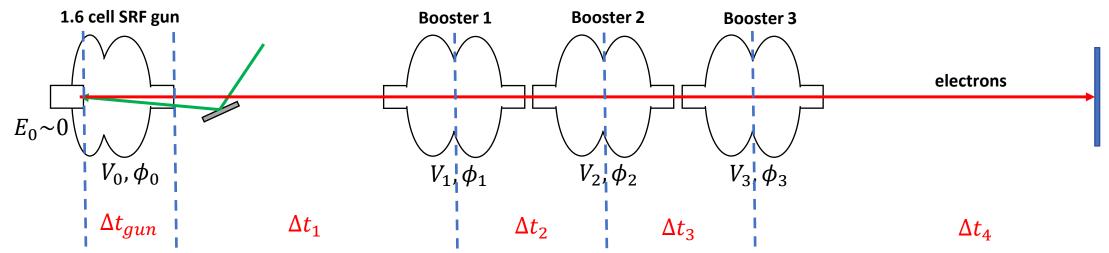
Following a **Slac MeV UED type** configuration with our RF gun:

Δt[10 ⁻¹³ -					
	_	-30	-20	-10	Ó	:
		_				
		/	For b	unch		
		- -		4	$\Delta t \geq$: 5


			Time	e resolu	tion			
10 ⁻¹² -	$\sigma_{laser} = 1$ $\sigma_{laser} = 1$ $\sigma_{laser} = 1$	LO ⁻¹³ s						
10-13 -							//	/
i I		-10	Ō	10 \$\phi_0\$	20	30	40	50

gies over 2 MeV: 500*fs*

Parameter for UED mode	Value in Sealab
Gun peak on-axis field	< 25 MV/m
Laser pulse length rms	> 1 ps
Charge from cathode	1 to 10 pC -> 1 to 100 fC collimated


Solution: Booster Cavities

Time of Flight Jitter

- Jitter between gun RF and laser:
- Parameter fluctuations in each cavity:

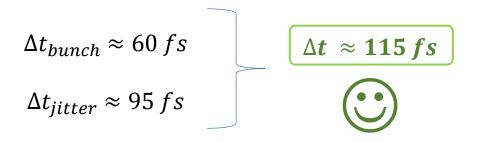
$$\Delta t_{RL} = 300 \, fs$$

 $\Delta\phi_{cav}=0.05$ °, $\Delta V_{cav}=10^{-4}V_{cav}$

These values are educated guesses. We will only be sure once we measure them.

$$\Delta t_{jitter} = \sqrt{\sum \left(\frac{dT_{flight}}{dV_n} \Delta V_n\right)^2 + \sum \left(\frac{dT_{flight}}{d\phi_n} \Delta \phi_n\right)^2}$$

Emission from gun using on-crest phase cancels laser time jitter. Optimization of boosters -> Jitter down to 75fs rms.


Summary

→ Beamline is currently under commissioning, first beams expected by early 2022. Experimental measurements soon...

→ Current status of UED in Sealab:

• Simulations show that we are able to achieve suitable UED parameters, work is ongoing to improve time resolution to sub-100fs levels. Best optimization at the moment results in:

This time resolution is competitive with current worldwide UED facilities.

Measuring time resolution is essential: Arrival time and bunch length diagnostics is needed for experiments.

Optimized transverse beam parameters at target for E = 3.0 MeV:						
Collimator diameter [µm]	Q [fC]	$\sigma_{\perp} \; [\mathrm{mm}]$	$\epsilon_{\perp,n} \; [\mathrm{nm} \mathrm{rad}]$	l_c [nm]	$\Delta s [\text{Å}^{-1}]$	
500	50.0	0.33	19.5	6.4	0.016	
200	8.1	0.15	7.0	8.2	0.012	
100	2.1	0.10	3.5	11.0	0.009	