Slice energy spread measurement at PITZ

Mikhail Krasilnikov, Houjun Qian for the PITZ team

MT ARD ST3 Meeting 2021, 30.09.2021

Critical parameter in FEL optimization SASE FEL:

- $\frac{\sigma_E}{F} < \rho_{FEL}$ (e.g. 1e-4, 5 kA/1.4 MeV \rightarrow 20 A/5.6 keV)
- If σ_E too low \rightarrow microbunching instability (MBI)

→ Laser heater (LH) to suppress MBI (e.g. LCLS→20 keV by LH)

Seeded FEL:

Bunching factor and harmonic number

e.g. HGHG@ FERMI: 100 keV \rightarrow 40 keV \rightarrow 16 nm (n=15) \rightarrow 10 nm (n=25)

Slice energy spread measurements

Method = Transverse Deflecting System (TDS) + Dipole

	SwissFEL	EuXFEL	Unit
Q	200	250	рС
Ek	100-400	130	MeV
Ipeak	20	20	А
dE	15	6	keV
lpeak/dE	1.3	3.3	A/keV

Why is the energy spread results so different?

- Cathode effect (Cu vs Cs₂Te) due to response time
- Laser temporal noise
- Lattice, IBS
- Or measurement effects?

SwissFEL and EuXFEL:

- use energy scan or dispersion scan to fit contribution from screen and emittance
- require a constant central slice β function at dipole screen during scan
- fits better **high** beam energies

Method used at PITZ:

- does not require constant β function
- **scan** TDS voltage, then measure $\sigma_{scr}^2 + \sigma_{emit}^2$ independently with a **slit mask** by scanning R12
- fits better **low energy** injector (closer to electron source)

Page 2

Slice energy spread measurements at PITZ

50 um

Slit cut

Beamlet

TDS voltage scan with and without vertical emittance reduction

Slits were used to:

- cut emittance to improve TDS time and energy resolution:
 - $\varepsilon_y \sim 0.4 \ mm \ mrad \rightarrow 0.04 \ mm \ mrad$
 - a factor of ~10 improvement on LPS resolution, reduces the error bar

- measure dispersion screen resolution
- measure beam size @dispersion screen due to emittance

$$\sigma_M^2 - \left(D \, \frac{\sigma_{E,TDS}}{E}\right)^2 = \sigma_{scr}^2 + \sigma_{emit}^2 + \left(D \, \frac{\sigma_E}{E}\right)^2$$

	Total	$\sigma_M = 107 \ \mu m$	→2.33 <i>keV</i>	
	screen resolution	$\sigma_{scr} = 70 \ \mu m$	→1.52 <i>keV</i>	
	beam emittance term	$\sigma_{emit} = 30 \ \mu m$	→ 0.65 <i>keV</i>	
DESY.	slice energy spread	→ 76 μm	$\sigma_E = (1.65 \pm 0.05) keV$	ASTRA Simulation value 1.3 keV

 $\sigma_E(t\sim 0) = 1.65 \pm 0.05 \ keV$ was measured for the XFEL nominal working point, slightly higher than ASTRA simulations 1.3 keV, but much lower than high energy injectors