Longitudinal tomography at the HElmholtz Linear ACcelerator

S. Lauber^{1,2,3}, K. Aulenbacher^{1,2,3}, W. Barth^{1,2,3}, P. Forck², M. Miski-Oglu^{1,2}, T. Sieber², S. Yaramyshev²

¹HIM Helmholtz-Institut Mainz, Mainz, Germany ²GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ³JGU Johannes Gutenberg-Universität, Mainz, Germany

Introduction

- GSI Helmholtzzentrum at Darmstadt is the worldwide leading center for heavy ion research.
- Since 50 years the heavy ion UNILAC is the main accelerator at GSI.
- The GSI Super Heavy Element (SHE) user program led to the discovery of six elements for the periodic table.

but UNLIAC is going to be upgraded...

UNILAC - Requirements for FAIR and the SHE-Program

FAIR requirements

- high beam currents
- low repetition rate (max. 3 Hz)
- low duty factor

Super Heavy Element (SHE) requirements

- relatively low beam currents
- high repetition rate (50 Hz)
- high duty factor (100 %, pulse length up to 20 ms)

Material Science at GSI requirements

- heavy ions (m > 200)
- beam energy (up to 10 MeV/u)
- smoothly variable beam energy (1.5 10 MeV/u)

Design Layout for the HELIAC

Therefore, a new dedicated CW capable accelerator is under construction:

HEImholtz Linear ACcelerator (HELIAC)

, which is a common project of HIM and GSI under key support of GUF-IAP and JG-U.

	Design Value
Mass/Charge	6
Frequency	108.4 (216.8) MHz
Max. beam current	1 mA
Operation mode	continuous wave (CW)
Injection energy	1.4 MeV/u
Output energy	3.5–7.3 MeV/u
Output energy spread	±3 keV/u

Recent Experimental Setup at GSI

HLI consists of ECR ion source, RFQ and IH-DTL cavity

IH-DTL design with KONUS (Kombiniert Null Grad Struktur) beam dynamics (0° synchronous phase)

- providing efficient acceleration
- deformation of the bunch shape in the longitudinal phase plane
- output beam parameters are (very) sensitive to cavity RF settings

Motivation

6D matching of the beam to the cavity acceptance is required

- Transverse beam parameters already measured (x-x' and y-y' phase planes)
- Projection to the time axis (phase) measured with a Bunch Shape Monitor
- Mean beam energy measured with phase probe sensors

The so far not measured longitudinal bunch shape is of special interest due to the intrinsic nonlinearity of longitudinal KONUS beam dynamics

Therefore, a dedicated investigation for the longitudinal beam parameters is required

Simplified Scheme of the Recent Setup

- Beam provided by the injector GSI-High Charge State Injector (HLI)
- Two rebuncher cavities used for longitudinal beam focusing
- Accelerating cavity not in use for the presented investigations
- Feschenko Monitor (BSM) for longitudinal beam diagnostics

Bunch Shape Monitor of Feschenko-type

Minimally invasive

Fixed wire in beam line

Secondary Electron (SE) emission time dependent

RF field deflects SE \rightarrow spatial signal

Spatial signal → Secondary Electron Multiplier

Sufficient resolution (1° at 108 MHz)

Feschenko, A.V., "Technique and instrumentation for bunch shape measurements", in *Proc. RuPAC'12*, Russia, 2012

Reconstruction Goal

Overview: Reconstruction Algorithms

Related approaches:

- Quadrupole / Rebuncher Scan Technique \rightarrow only Twiss parameters
- ART / SART → requires lots of projections, e.g. @CERN Algebraic Reconstruction Technique
- FBP → for linear mapping Filtered Back Projection
- MENT Reconstruction → memory intense, e.g. @DESY Maximum ENTropy

NNLS Reconstruction \rightarrow close to least square Non Negative Least Squares

Reconstruction Algorithm

The measurements must be connected to the input plane.

Each measurement bin corresponds to a sum (line integral) along the input

The mapping from *input* to *measurement* can be derived from beam dynamics simulations

Reconstruction Algorithm

Reconstruction Algorithm

Linear system of equations obtained:

$$\vec{\rho} = A \cdot \vec{I}$$

Connects all measurements ρ with input grid intensities *I*.

Solve for intensities:

minimize
$$f(\vec{I}) = |A \cdot \vec{I} - \vec{\rho}|$$

subject to $\vec{I} \ge 0$

Solved by Non-Negative Least Squares algorithms from the scientific python library.

Measurements

Reconstructed particle distribution at HLI injector exit

Clearly visible core

Verification I

Verification I

Verification II

- New position of the BSM
- Measurements directly at reconstruction point
- Verification of reconstruction algorithm and results
- Measurements were repeated after one year later
 - Injector tuned differently
 - New reconstruction

Verification II

Summary & Outlook

- Analysis procedure for reconstruction developed
- Reconstruction method has been carried out
- Validation measurements accomplished
- Reduction of measurement number is envisaged
- A new tool (based on BSM measurements) for further optimization of HLI injector is under investigation
- Faster bunch shape measurements applying Fast Faraday Cup are going to be investigated

Thank you for your attention!

MT ARD ST3 Meeting 2021

Simon Lauber, Longitudinal tomography at HELIAC

MT ARD ST3 Meeting 2021

Matching Line - BSM

HLI provides Ar¹¹⁺, Ar⁹⁺, Ar⁶⁺, He²⁺ @ 1.4 MeV/u

- QT: Quadrupol triplet
- R: Re-Buncher (QWR)
- QD: Quadrupole doublet
- x y: Steering magnets
- G: Profile Grid
- T: Beam current transformers for transmission measurement
- P: Phase probes for TOF measurement
- BSM: Bunch shape monitor (Feschenko monitor)
- EMI: Slit-Grid emittance measurement device