
© Fraunhofer IESE 2010

Sören Kemmann

Stochastic models & analyses 
for embedded systems evaluation



© Fraunhofer IESE 2010

Content

�Reliability Block diagrams (RBD)

�Fault Trees (FT)

�Component Fault Trees (CFT)

�Dynamic Fault Trees (DFT)

�Stochastic Petri nets (SPN)

�GSPN, DSPN

�PN analysis

�A comparison of the expressive power of model types



© Fraunhofer IESE 2010

RBD

� Reliability Block Diagrams



© Fraunhofer IESE 2010

� “Which elements of the system may fail without causing 
system failure?”

� Models necessary components for system functions
� Compare Fault Trees:
� Fault Tree: Which basic events are necessary for a 

given failure?
� RBDs: Which components must be available for correct 

operation

Reliability Block Diagrams (RBD)



© Fraunhofer IESE 2010

� Example:

� Correct system operation is given when there is a path 
from one side to the other
� The system works if A, B and D are available or A and C 

are available.
� RBD allows easy identification of A as single point of 

failure.

Reliability Block Diagrams (RBD)

A

B

C

D



© Fraunhofer IESE 2010

FT

� Fault Trees



© Fraunhofer IESE 2010

&

1

A B C

Portable computer 
unavailable

Battery empty

Power supply 
defective

Hardware 
defective

Fault trees
Analysis method for dependability 
properties

Recursive, deductive decomposition of 
causes for a given hazard or failure in the 
form of a DAG

� Root (top event) = hazard/failure

� Leaves (basic events) = elementary 
causes

� Logical gates (And, Or, …) explain 
interaction of causes 

Basic
event

Top
event

Gate



© Fraunhofer IESE 2010

Fault tree analysis
Use

� Search for all relevant causes for hazards and failures

Qualitative analysis

� Listing all combinations of basic events that are necessary and sufficient to 
cause a top event

� Search for single points of failure (with minimal cut sets, MCS)

Quantitative Analysis

� Calculation of hazard or failure probabilities from given probabilities for 
elementary causes

Other measures

� Mean time to failure (MTTF) 

� Influence/importance measures



© Fraunhofer IESE 2010

Qualitative FTA

� Determine MCS

� Find minterms/implicants

� ABC, AB~C, A~BC, ~ABC, 
~A~BC

� Remove negated variables

� ABC, AB, AC, BC, C

� Minimise

� {A, B}, {C}

&

1

A B C

Portable computer 
unavailable

Battery empty

Power supply 
defective

Hardware 
defective

0.2 0.3 0.1

0.06

0.154



© Fraunhofer IESE 2010

Quantitative FTA

� Apply gate formulae bottom up

� Result when reaching the top event

Bottom-up calculation is inefficient for large FT. 
There are two main alternatives…

� Minimal cut set algorithm

� BDD-based algorithm

(BDD = binary decision diagram)

&

1

A B C

Portable computer 
unavailable

Battery empty

Power supply 
defective

Hardware 
defective

0.2 0.3 0.1

0.06

0.154



© Fraunhofer IESE 2010

Top event probability calculation – BDD method

(A ∧ B) ∨ C

P(TE) = AB  + A~BC  + ~AC = 0.154

P(TE) = 0.06 + 0.014 + 0.08 = 0.154

0.2

0.3
0.7

0.1
0.9

0.8

&

1

A B C

Portable computer 
unavailable

Battery empty

Power supply 
defective

Hardware 
defective

0.2 0.3 0.1

0.06

0.154



© Fraunhofer IESE 2010

Top event probability calculation – MCS method

(TE)

MCS = {{A, B}, {C}}

Calculation of top event probability 
as sum of MCS probabilities

P(A)*P(B) = 0.06

P(C) = 0.1

Σ = 0.16 = P(TE)

BDD method: P(TE) = 0.154

�MCS method yields 
approximation



© Fraunhofer IESE 2010

Deficiencies of conventional fault trees

No compositionality

� Technical and software(-controlled) systems are 
made of components.

�Software design models are often compositional Æ
lack of integration.

No integration with other (aspects of) software/embedded 
systems (ES) design models, such as statecharts, 
Matlab/Simulink models etc.



© Fraunhofer IESE 2010

CFT

� Component fault trees



© Fraunhofer IESE 2010

Traditional FT decomposition by modules

= +&

e1
transfer 1

&

&

e2

e4

transfer 1

e3

Traditionally, “modules” are independent subtrees.



© Fraunhofer IESE 2010

Component fault trees

+=

CFT component corresponds to technical component.
Components have specification/realisation with in- and outports.

&

&

&

e1
p=0.4

e2
P=0.3

e3
P=0.1

e4
p=0.2

Sub-Component1

System Component1

&

&

System.e1
p=0.4

System.e2
P=0.1

System.e3
p=0.2

&

Comp1.e1
P=0.3

Sub-
Component1 :
Component1

Comp1.in1

Comp1.out1

System.out1

Inport

Outport

Subcomponent
Internal
event



© Fraunhofer IESE 2010

Component fault trees

What is this good for?

� Composition enables integration of failure with 
design/architecture models.

� Example: signal flow graph can be used for automatic CFT 
composition

Component FTA



© Fraunhofer IESE 2010

DFT

� Dynamic fault trees



© Fraunhofer IESE 2010

� Problem
� FTA cannot model the order in which components fail

� Solution
� Dynamic fault trees (DFT) extend FTA to allow analysis of computer-

based systems characterised by
� Spares (cold, warm, pooled) 
� Functional and sequence dependences
� Imperfect coverage and other common-cause failures

Dynamic fault trees (DFT)



© Fraunhofer IESE 2010

� DFT has constructs (gates) for modelling 
� Sequence dependences (priority-And)
� Functional dependences
� Spares (hot, warm, cold)

� DFT model is divided into independent modules 
that are solved separately

� Modules are classified as 
� static (containing only traditional gates) or 
� dynamic (containing at least one dynamic gate)

Dynamic fault trees (DFT)

Priority-And
(A before B)



© Fraunhofer IESE 2010

� Separate modules are solved using most appropriate means 
� Markov chain for dynamic modules
� BDD for static modules
� Results are synthesised

� Pros and cons
� + Easier to use than Markov model directly
� - State space largeness (can be exponential in number of basic events)

Dynamic fault trees (DFT)



© Fraunhofer IESE 2010

Petri nets



© Fraunhofer IESE 2010

Petri nets

�Modelling of system behaviour

�With focus on concurrency

�Large number of varieties

�Formal description and graphical representation

�Based on ideas of Carl Adam Petri (Dissertation 1962)



© Fraunhofer IESE 2010

Petri nets

�Tokens

�Entities

�Places

�Location/state of entities

�Transitions

�Activities

�Marking

�System state



© Fraunhofer IESE 2010

Petri nets

�Ongoing activity

�Transition is enabled

�All preconditions of transition have to be fulfilled

�Activity is finished

�Transition fires

�Firing is atomic

�New marking/system state

Transition 
is enabled  Transition fires



© Fraunhofer IESE 2010

Petri nets

�Transition types

� Immediate

�Takes no time between enabling and firing

�Can be prioritised for case of conflict

�Timed

�Takes time between enabling and firing

�Exponentially timed

�Deterministically timed



© Fraunhofer IESE 2010

Petri nets

�Arc weights

�For flow arcs

�Minimum number of tokens
on place to enable transition

�Number of tokens consumed/produced

�For inhibitor arcs

�Min. number of tokens needed 
on place to disable transition

�Arc weights or priorities make PN Turing complete!



© Fraunhofer IESE 2010

�Concurrency

�Conflict

�Firing constraints

Petri nets – typical structures

Conjunction Disjunction



© Fraunhofer IESE 2010

Petri Nets: Formal Definition

A marked Petri net is formally defined by the following tupleܲܰ	 ൌ ሺܲ, ܶ, ଴ሻܯ,ܹ,ܨ
whereܲ ൌ ,ଵ݌ ,ଶ݌ ௉݌	… is the set of placesܶ ൌ ,ଵݐ ,ଶݐ ்ݐ	… is the set of transitionsܨ ⊆ ܲ ൈ ܶ ∪ ሺܶ ൈ ܲሻ is the set of arcsܹ:ܨ	 → 1, 2, … 	 is a weight functionܯ଴ ൌ ݉଴ଵ,݉଴ଶ, …	݉଴௉ is the initial marking

Combining the information provided by the flow relations and by the weight
function, we obtain the Incidence Matrixܥ ൌ 	 ଵଵܥ ⋯ ⋮ଵ்ܥ ⋱ ௉ଵܥ⋮ ⋯ ௉்ܥ



© Fraunhofer IESE 2010

Petri Nets: Simple example – Producer/Consumer
Petri net model:

Set of places:

Set of transitions:

Initial marking:

Incidence matrix:

T0     T1     T2     T3
P0
P1
P2
P3
P4
P5

produce buffer consume



© Fraunhofer IESE 2010

Petri Nets: Simple example – Producer/Consumer
Petri net model:

Reachability Graph:

produce buffer consume



© Fraunhofer IESE 2010

� Condition-event nets

� At most one token per place

� Place-transition nets

� Arbitrary number of tokens on places

� State machines

� Transitions have exactly one input and output place

� Can model finite state automata

� Marked graphs

� Places have exactly one input and output transition

� No conflicts possible

� Stochastic PN

� High-level PN

� For example, coloured PN

Petri net types (untimed)



© Fraunhofer IESE 2010

� PN properties

� Behavioural properties (marking dependent)

� ReachabilityÆ reachability graph (one node for every PN marking)

� Liveness (deadlock free)

� Structural properties (marking independent)

� Concurrency

� Synchronisation points

� Analysis

� Incidence matrix

� Graph-based methodsÆ reachability graph

Petri net analysis (untimed)



© Fraunhofer IESE 2010

Time and Petri Nets



© Fraunhofer IESE 2010

�Stochastic Petri nets (SPN)

�All transition firing times are exponentially distributed

�Generalised stochastic Petri nets (GSPN)

�Firing times are immediate or exponentially distributed

�Deterministic stochastic Petri nets (DSPN)

� Immediate, exponentially distributed or deterministic

Petri net types (timed)



© Fraunhofer IESE 2010

Timing Specifications

� Time is associated to places

� Time is associated to tokens

� Time is associated to arcs

� Time is associated to transitions



© Fraunhofer IESE 2010

Timed transitions

� Time is associated to transitions, that represent „activities“

� Activity start corresponds to enabling

� Activity end corresponds to firing

� Delay is associated with transitions



© Fraunhofer IESE 2010

Stochastic (Exponential) Petri Nets

� The delay of a transition is a random variable

� Timed Transition PN with atomic firing and race policy in which transition
delays are random variables exponentially distributed are called Stochastic
Petri Nets (SPN)

� SPN is the name chosen by Molloy in 1982, but more adequate one could be
Exponential Petri Nets



© Fraunhofer IESE 2010

Generalized Stochastic Petri Nets

� Two types of transitions

� Timed with an exponentially distributed delay

� Immediate, with constant zero delay

� Why immediate transitions:

� To account for instantaneous actions (typically choices)

� To implement logical actions (e.g. emptying a place)



© Fraunhofer IESE 2010

GSPN: Simple example – Producer/Consumer
GSPN model:

Set of places:

Set of transitions:

Initial marking:

Incidence matrix:

T0     T1     T2     T3
P0
P1
P2
P3
P4
P5

produce buffer consume



© Fraunhofer IESE 2010

GSPN: Simple example – Producer/Consumer
Petri net model:

Reachability Graph:

produce buffer consume



© Fraunhofer IESE 2010

PN vs. GSPN

GSPN

PN



© Fraunhofer IESE 2010

� Mapping to underlying stochastic process

� Reward measures derived from state probabilities of stochastic process

� Determine reachability graph of SPN and GSPN 

� Convert reachability graph to Markov chain

� May experience state space largeness problems

� DSPN are mapped to embedded Markov chain

� Simulation

� Statistical measures

� No problems with state space size (except precision)

Petri net analysis (timed)



© Fraunhofer IESE 2010

Petri nets – a practical view

Trigger B

Viewpoint A

Limit of
Controllight

Middle of the roadGeneral railway crossing problem



© Fraunhofer IESE 2010

Petri nets – a practical view



© Fraunhofer IESE 2010

Petri nets – a practical view

?
- Mapping (F Æ GSPN)
- Understandability
- Scalability
- *ilities



© Fraunhofer IESE 2010

Expressive power of model types

** Æ There are approaches to tackle components

*** Æ There are approaches for semi-quantitative Analysis


