

### Outline



- Requirements on pixel sensors
- Basics silicon detector & CMOS principle
- Recent R&D to improve performance
- A future pixel at DESY

### Why pixel sensors



#### In general...

- Reconstruction of particle trajectories at e.g. collider
  - ▶ Vertex/momentum resolution → small pixels/strips
  - ➤ Pile up → time resolution
  - ➤ Minimize impact on particle → little material
  - > Survive at a collider → Radiation hardness
- Silicon sensors well established in the last 40 years solving numerous challenges:
  - Detector mechanics
  - Data rates
  - > Radiation dose at the LHC
  - ➤ Powering concepts
  - ➤ ...

#### ...and in the future

- Next generation of detectors (particle and nuclear physics) need
  - > Finer pitch → power, channel density
  - ➤ Faster timing → power
  - > **Less material** → thin
- All in one impossible with existing sensors
- We need to
  - > Lower the power budget
  - Compress the data on chip to compensate channel density
  - Higher in-pixel intelligence

### The ideal pixel tracker



- Infinitesimal position resolution
- Infinitesimal time resolution
- No interaction with detected particle
- No power consumption
- Floating

- → Reduce pixel size, measure charge, engineer fields
- → Fast collection of charge, engineer fields
- → Minimize the material budget
- → Use power pulsing, etc
- → Lightweight mechanics, little cooling, sensor stitching

# Charge Collection & CMOS Sensors





## A pixel sensor in a nutshell





### Charge deposition



- Ionization **Bethe-Bloch**, create electron-hole pairs (ehp)
- Stochastic process, on average 80 ehp per um for a minimum ionizing particle
- Asymmetric distribution
  - → MPV<<Mean</p>
  - → lower tail is critical
- Fluctuations larger for thin active layers (Bichsel/Landau-Vavilov)
- In addition: Secondaries, deltas,...
- For a pixel sensor, we need to be able to see ¼
   of the minimal deposited charge



# Charge Transport: Drift vs Diffusion

Charge spread larger for diffusion → better interpolation, but slower





100 ns

# Charge transfer and processing



- Collected charge has to be transferred to front-end via:
  - Bump-bonds (DC)
  - Glue, Si02 (AC)
  - Monolithic sensor (DC, simple on ASIC line)
- CMOS based front-end electronics for
  - Amplification
  - Charge measurement
  - Digitization
  - Data transmission
- Support structures, cooling, etc (ignored from now on)





### Processing information

p-substrate

- Complentary Metal Oxide Semiconductor
- Standard for ASIC/chip design
- Combination of PMOS and NMOS FET
- Example: Inverter
  - $\rightarrow$  Vin 1 $\rightarrow$  NMOS switches $\rightarrow$  Vout=Vss
  - → Vin 0→PMOS switches→Vout=Vdd
- Only current drawn while switching
  - → power efficient

• CMOS used to amplify, digitize and process charge **NMOS** 

inputs in HEP



>99% of all ASICs are CMOS

# Precisely measuring charge/time



Prcise time measurement: low threshold and fast sampling



- Full charge integration → complex, ADC on chip is large
- Pulse height → needs also and ADC
- Time-over-threshold → simply sample both edges of discriminated pulse, but noise influenced → no need for much additional logic. but also prone to noise

All above methods have pro and cons, choose depending on target



# Silicon CMOS Sensors Family Tree





### Monolithic sensors

### HV-CMOS: Large fill factor

- AMS/TSI 180nm **HV-CMOS**
- Large detector capacity
  - Higher noise
  - Charge sensitive amplifier & higher analog power
- Short drift distances
  - Rad hard
  - Better timing



### HR-CMOS: Small fill factor

- TJ 180nm imaging process, LF-150nm, GF-120nm,...
- Small detector capacity
  - Lower noise
  - Simple voltage amplifier & low power consumption
- Drift distance depends on impact position
  - Less rad hard
  - Timing worse





# MuPix/ATLASPix Family

DESY.

- AMS/TSI 180nm HV-CMOS
- Developed at KIT by I. Peric
- Large number of sensors available.
- Column drain readout architecture with partner cell in periphery
- 99.9% efficient, time res <5ns, radiation hard
- Zero suppressed self triggered readout state-machine







# ALPIDE/Monopix Family

DESY.

16

- TJ 180nm & LF 150nm
- Small collection diode
- Process modification to improve depletion
- Low analog power consumption
- Rad hard. Tricky, but realized with pCz substrate







#### Image credit:

A process modification for CMOS monolithic active pixel sen sors for enhanced depletion, timing performance and radiati on tolerance

lennart.huth@desy.de

### Time Resolution in fine pitch

- CLICTD sensor study in TJ180nm
- Add a trench to the n-type blanket
- More charge in a single pixel
  - → faster threshold crossing
  - → better timing
  - → But spatial resolution is reduced
- Spatial resolution reduced







# Going even further - FASTpix



- Up to now: Trade between lateral field and detector capacitance
- Detailed TCAD/Monte-Carlo studies to test the concepts before submission
- Hexagonal pixels → less charge sharing → faster
   & more efficient
- Optimization of deep n-well shape
- Rise times below 1 ns even for a 10um pitch sensor
- New challenges on readout speed/ on-chip TDCs
- CERN Detector Seminar, M. Munker

### Rise time distribution measured with source, FASTpix re-optimised process:



### Position Resolution



- Brute force method:
  - Reduce pixel size, but
    - More channels
    - Less space for electronics
    - Higher power consumption
    - Larger clusters → higher hit rate
- Precisely measure deposited charge
  - Pulse-height/ToT
  - Full waveform readout?
  - Lower detection thresholds
- Charge deposited by particle in narrow cylinder around trajectory
  - $\rightarrow$  Drift collection, barely any chance for larger clusters in planar like sensors
  - → Optimizing the E-field for charge sharing, the **E**nhanced **La**teral **D**rift concept (Jansen, Velyka, Spannagel) also for monolithic CMOS sensors?
  - → Optimizing n-blanket layer to optimize charge sharing



Current developments have pitches down to 30um

→ Not sufficient to reach resolution of MIMOSA-26

Consider moving to a more diffusion based sensor with a very thin depletion layer → the power of interpolation.

But this would be again rather slow.

### Material Budget



- We cannot do much about the density of silicon:
  - → Reduce thickness,
  - 50um is a standard, how far can one go?
  - Less active depth
  - Less charge to collect
- Further increases the need for low noise/high amplification readout circuitry
- Crucial for future vertexing detectors
  - → Monolithic approaches

- Reduction of support material
  - → wafer sized chips/stitching
  - → ALICE ITS3 concept



65nm imaging process - A little bit of future at DESY





### From 180nm to 65nm



- Higher logic density possible → more on chip intelligence (at least factor 4 for our porcess)
- New process → long lifetime & support
- Reduced power consumption → less cooling required (1.8V → 1.2V)
- Smaller structure intrinsically more rad hard.
- Demanding requirements by CLIC, ILC, FCC hard to match with current technologies
- Digital logic will become more complex: Power pulsing, data compression, clustering on-chip,...
- CIS-processes required to deplete active volume

#### But:

- Completely unknown process
- Cutting edge technology → process still in development
- Rather expensive
- Need to start from scratch:
  - Test uniformity within chip
  - Predictability
  - Is the production reliable
  - What's fraction of issued chips
  - How much can we manipulate the process to fit our needs
  - Very basic transistor tests

### Design Status



- First test chip is designed (C. Reckleben/FE)
- First custom CSA in this technology
- 4 pixels, Pitch 16um
- Already in production, Expected back this summer
- Small part of shared run with:
  - Transistor test structures.
  - Analog test pixels
  - Rolling shutter matrix
  - Front-end amplifiers
  - LVDS signaling tests





















Science & Technology Facilities Council Rutherford Appleton Laboratory

### Take away

DESY.

- CMOS sensors will be a key technology for future trackers
- Demanding requirements cannot be matched with existing pixel sensors
- A lot of research ongoing
- ELADs & 65nm developments at DESY
- Moving away from simply scaling to process engineering & system-on-chip concepts
- Simulation studies more and more important
- Many topics not included



There is not (yet) one solution for all challenges and improving one parameter typically trades another one.



# Backup

### Time resolution



$$\sigma_t^2 = \sigma_{TimeWalk}^2 + \sigma_{LandauNoise}^2 + \sigma_{Distortion}^2 + \sigma_{Jitter}^2 + \sigma_{TDC}^2$$

- Bichsel/Landau-Vavilov flcutuations limiting resolution
- Need to be sensitive to the very first electrons collected
- Adding an avalanche layer close to collection electrode
- "LGAD"-principle
  - Current status/details would be a topi of itself, maybe another presentation i this forum?
  - A few 10 ps possible

Can be optimized for any CMOS sensor





Image credits: Hartmut F-W Sadrozinski

### Hybrid sensors I - ELADs

- Enhanced-LAteral-Drift (ELAD)
- Actively enhancing the charge sharing between 2 pixels, by manipulating the sensors bulk
  - Ideal scenario: Linear dependence of charge sharing between two pixels
  - Improves resolution without penalty of high channel and hit counts
- Extensive simulation studies with TCAD/Allpix2 proof feasability
- No sensors yet
- Concept can be connected to any readout ASIC that matches the pixel pitch → highly flexible
- Developments by Hendrik Jansen, Anastasiia
   Velyka and Simon Spannagel @ DESY



### Hybrids



#### Timepix4 (just an example)

- 200ps time resolution
- 55um pitch
- 256x256 pixels
- < 500 Mhits/s
- 20.48 Gbit/s data rate
- ToT with energy resolution < 1keV</li>
- Significantly more complex as monolithic sensors at the moment.



### Collecting charge



- P and N doped silicon in contact
  - → Depletion region, increased with a bias
  - → strong electric field
  - → Extension of depletion zone depends on relative doping concentration
- Signal is induced by motion of e/h paris.
  - Two types of particle motion:
    - → **Drift**: Along the electric field lines, fast
    - → Diffusion: Temperature dependent random walk with ~ 100nm free path length
- Signal formations completed when all charge reaches electrode or recombines.

