
CMOS Sensors – From a physicists
Point of view 

24.02.21
Lennart Huth

Fortnightly SiDet R&D Meeting



24-Feb-2021 lennart.huth@desy.de 2

Outline

● Requirements on pixel sensors
● Basics silicon detector & CMOS principle
● Recent R&D to improve performance
● A future pixel at DESY
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Why pixel sensors

➢ Next generation of detectors (particle and 
nuclear physics) need
➢ Finer pitch → power, channel density
➢ Faster timing → power
➢ Less material → thin

➢ All in one impossible with existing sensors 
➢ We need to

➢ Lower the power budget
➢ Compress the data on chip to compensate 

channel density
➢ Higher in-pixel intelligence

➢ Reconstruction of particle trajectories at e.g. 
collider
➢ Vertex/momentum resolution → small pixels/strips 
➢ Pile up → time resolution
➢ Minimize impact on particle→ little material
➢ Survive at a collider → Radiation hardness

➢ Silicon sensors well established in the last 40 years 
solving numerous challenges:
➢ Detector mechanics
➢ Data rates
➢ Radiation dose at the LHC
➢ Powering concepts
➢ ...

In general... ...and in the future
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The ideal pixel tracker

● Infinitesimal position 
resolution

● Infinitesimal time resolution
● No interaction with detected 

particle
● No power consumption
● Floating

→ Reduce pixel size, measure charge, 
engineer fields

→ Fast collection of charge, engineer 
fields

→ Minimize the material budget

→ Use power pulsing, etc

→ Lightweight mechanics, little 
cooling, sensor stitching



Charge Collection &
CMOS Sensors
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A pixel sensor in a nutshell

S. Spannagel
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Charge deposition
● Ionization Bethe-Bloch, create electron-hole 

pairs (ehp)
● Stochastic process, on average 80 ehp per um 

for a minimum ionizing particle
●  Asymmetric distribution

→  MPV<<Mean
→ lower tail is critical 

● Fluctuations larger for thin active layers 
(Bichsel/Landau-Vavilov)

● In addition: Secondaries, deltas,...
● For a pixel sensor, we need to be able to see ¼ 

of the minimal deposited charge

Image credit pdg

https://pdg.lbl.gov/2019/reviews/rpp2018-rev-passage-particles-matter.pdf
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Charge Transport: Drift vs Diffusion

100 ns

Charge spread larger for diffusion → better interpolation, but slower
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Charge transfer and processing
● Collected charge has to be transferred to 

front-end via:
– Bump-bonds (DC)
– Glue, Si02 (AC)
– Monolithic sensor (DC, simple on ASIC line)

● CMOS based front-end electronics for
– Amplification
– Charge measurement
– Digitization
– Data transmission

● Support structures, cooling, etc (ignored 
from now on)

Active sensor

Readout chip

Active sensor

Readout chip

High res. Sub.
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Processing information
● Complentary Metal Oxide Semiconductor 
● Standard for ASIC/chip design
● Combination of PMOS and NMOS FET
● Example: Inverter

→ Vin 1→NMOS switches→Vout=Vss
→ Vin 0→PMOS switches→Vout=Vdd

● Only current drawn while switching
→ power efficient

● CMOS used to amplify, digitize and process charge 
inputs in HEP

Image credit: cmos - wikipedia

>99% of all ASICs are CMOS

NMOS

PMOS

https://en.wikipedia.org/wiki/CMOS
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Precisely measuring charge/time

● Full charge integration → complex, ADC on chip is 
large

● Pulse height → needs also and ADC
● Time-over-threshold → simply sample both 

edges of discriminated pulse, but noise  
influenced → no need for much additional logic, 
but also prone to noise

 
All above methods have pro and cons, choose 
depending on target

ToT

he
ig

ht

Prcise time measurement: low threshold and fast sampling



Si Sensors Overview &
Recent Monolithic R&D 
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Silicon CMOS Sensors Family Tree
Silicon Pixel sensors

Planar Bump Bonded HybridsMonolithic sensors

MAPS

HR-MAPS        HV-MAPS

ELADs

3D-sensors

Capacitively coupledCamera Imaging

Diffusion

Drift
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Monolithic sensors 
● AMS/TSI 180nm HV-CMOS 
● Large detector capacity

– Higher noise
– Charge sensitive amplifier & higher analog power

● Short drift distances
– Rad hard
– Better timing

● TJ 180nm imaging process, LF-150nm, GF-120nm,…  
● Small detector capacity

– Lower noise
– Simple voltage amplifier & low power consumption

● Drift distance depends on impact position
– Less rad hard
– Timing worse

   HV-CMOS: Large fill factor HR-CMOS: Small fill factor

Image credit: N. Wermes

https://indico.cern.ch/event/884089/attachments/1976520/3304302/Wermes_CERN_200207.pdf
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MuPix/ATLASPix Family

● AMS/TSI 180nm HV-CMOS
● Developed at KIT by I. Peric
● Large number of sensors available.
● Column drain readout architecture 

with partner cell in periphery
● 99.9% efficient, time res <5ns, 

radiation hard
● Zero suppressed self triggered 

readout state-machine

Active

Readout
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ALPIDE/Monopix Family
● TJ 180nm & LF 150nm
● Small collection diode
● Process modification to improve depletion
● Low analog power consumption
● Rad hard. Tricky, but realized with pCz substrate

Image credit: 
A process modification for CMOS monolithic active pixel sen
sors for enhanced depletion, timing performance and radiati
on tolerance

https://www.sciencedirect.com/science/article/pii/S016890021730791X
https://www.sciencedirect.com/science/article/pii/S016890021730791X
https://www.sciencedirect.com/science/article/pii/S016890021730791X
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● CLICTD sensor study in TJ180nm
● Add a trench to the n-type blanket
● More charge in a single pixel 

→ faster threshold crossing 
→ better timing
→ But spatial resolution is reduced

● Spatial resolution reduced

Time Resolution in fine pitch
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Going even further - FASTpix
● Up to now: Trade between lateral field and 

detector capacitance
● Detailed TCAD/Monte-Carlo studies to test the 

concepts before submission 
● Hexagonal pixels → less charge sharing → faster 

& more efficient
● Optimization of deep n-well shape
● Rise times below 1 ns even for a 10um pitch 

sensor 
● New challenges on readout speed/ on-chip TDCs
● CERN Detector Seminar, M. Munker

https://indico.cern.ch/event/997569/attachments/2180562/3683283/slides_detector_seminar_mmunker.pdf
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Position Resolution 
● Brute force method: 

– Reduce pixel size, but
● More channels
● Less space for electronics
● Higher power consumption
● Larger clusters → higher hit rate

● Precisely measure deposited charge
– Pulse-height/ToT
– Full waveform readout?
– Lower detection thresholds

● Charge deposited by particle in narrow cylinder around 
trajectory

→ Drift collection, barely any chance for larger clusters in planar like 
sensors
→ Optimizing the E-field for charge sharing, the Enhanced Lateral 
Drift concept (Jansen, Velyka, Spannagel) also for monolithic CMOS 
sensors? 
→ Optimizing n-blanket layer to optimize charge sharing

Mimosa26 - DESY

Image: Performance of the EUDET-type beam telescopes

Current developments have 
pitches down to 30um
→ Not sufficient to reach 
resolution of MIMOSA-26

Consider moving to a more 
diffusion based sensor with a 
very thin depletion layer → 
the power of interpolation.

But this would be again rather 
slow.

https://arxiv.org/pdf/1603.09669.pdf
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Material Budget
● We cannot do much about the density of 

silicon:
→ Reduce thickness, 

● 50um is a standard, how far can one go?
● Less active depth
● Less charge to collect

● Further increases the need for low 
noise/high amplification readout 
circuitry

● Crucial for future vertexing detectors 
→ Monolithic approaches

● Reduction of support material 

→ wafer sized chips/stitching

→ ALICE ITS3 concept

Image

https://indico.cern.ch/event/967357/contributions/4071101/attachments/2128746/3584456/WP4_20201023_ITS3_Plenary.pdf


65nm imaging process - A little 
bit of future at DESY



24-Feb-2021 lennart.huth@desy.de 22

From 180nm to 65nm
● Higher logic density possible → more on chip 

intelligence (at least factor 4 for our porcess)
● New process → long lifetime & support
● Reduced power consumption → less cooling 

required (1.8V → 1.2V)
● Smaller structure intrinsically more rad hard.
● Demanding requirements by CLIC, ILC, FCC hard 

to match with current technologies
● Digital logic will become more complex: Power 

pulsing, data compression, clustering on-chip,…
● CIS-processes required to deplete active volume

But:
● Completely unknown process
● Cutting edge technology → process 

still in development
● Rather expensive 
● Need to start from scratch:

● Test uniformity within chip
● Predictability
● Is the production reliable
● What’s fraction of issued chips
● How much can we manipulate 

the process to fit our needs
● Very basic transistor tests
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Design Status
● First test chip is designed (C. Reckleben/FE)
● First custom CSA in this technology
● 4 pixels, Pitch 16um
● Already in production, Expected back this summer
● Small part of shared run with:

– Transistor test structures, 
– Analog test pixels
– Rolling shutter matrix
– Front-end amplifiers
– LVDS signaling tests

● Readout system in development: Caribou DAQ system with 
custom chip board (Work in progress)

1.22mm
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Take away
● CMOS sensors will be a key technology for 

future trackers
● Demanding requirements cannot be matched 

with existing  pixel sensors
● A lot of research ongoing
● ELADs & 65nm developments at DESY
● Moving away from simply scaling to process 

engineering & system-on-chip concepts
● Simulation studies more and more important
● Many topics not included

There is not (yet) one solution for 
all challenges and improving one 
parameter typically trades another 
one.
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Backup
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Time resolution

● Bichsel/Landau-Vavilov flcutuations 
limiting resolution

● Need to be sensitive to the very first 
electrons collected

● Adding an avalanche layer  close to 
collection electrode

● “LGAD”-principle
– Current status/details would be a topic 

of itself, maybe another presentation in 
this forum?

– A few 10 ps possible
Image credits: Hartmut F-W Sadrozinski

Can be optimized for any CMOS sensor

https://indico.cern.ch/event/577879/contributions/2740418/attachments/1575077/2487327/HSTD1--HFWS1.pdf
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Hybrid sensors I - ELADs

standard ELAD

● Enhanced-LAteral-Drift (ELAD)
● Actively enhancing the charge sharing between 2 

pixels, by manipulating the sensors bulk
– Ideal scenario: Linear dependence of charge sharing 

between two pixels
– Improves resolution without penalty of high channel 

and hit counts
● Extensive simulation studies with TCAD/Allpix2 

proof feasability
● No sensors yet
● Concept can be connected to any readout ASIC 

that matches the pixel pitch → highly flexible
● Developments by Hendrik Jansen, Anastasiia 

Velyka and Simon Spannagel @ DESY 
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Hybrids

Timepix4 (just an example)
● 200ps time resolution
● 55um pitch
● 256x256 pixels
● < 500 Mhits/s 
● 20.48 Gbit/s data rate
● ToT with energy resolution < 1keV
● Significantly more complex as 

monolithic sensors at the moment.
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Collecting  charge
● P and N doped silicon in contact

→ Depletion region, increased with a bias 
→ strong electric field
→ Extension of depletion zone depends on 
    relative doping concentration

● Signal is induced by motion of e/h paris.
● Two types of particle motion:

→ Drift: Along the electric field lines, fast
→ Diffusion: Temperature dependent 
    random walk with ~ 100nm free path length

● Signal formations completed when all charge 
reaches electrode or recombines.
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