





# Fabrication and Characterization of Graphene-Superconductor Devices

Udai Raj Singh ALPS group Deutsche Elektronen-Synchrotron (DESY) Hamburg, Germany

FH Fellow Meeting 2021: 25-26 Mar 2021

# **Personal Introduction**



# Timeline of superconductivity



wikipedia.org

# Applications of superconductors

#### Maglev trains-400 Km/hr



# Superconducting magnet in MRI machine



#### Superconductor-based cables



#### Superconducting detector



#### Quantum computers



#### Superconducting cavities





#### Singh et al., RSI 84, 013708 (2013)

# Metal - Al and Al- Al superconductor junctions



 $\frac{dI}{dV} \propto N_{sample} (eV) e^{-\kappa z}$ 

**Dynes function** 

$$\frac{dI}{dV}(E) = \frac{E - i\Gamma}{\sqrt{\left(E - i\Gamma\right)^2 - \Delta^2}}$$

Γ: quasiparticle-lifetime broadening

SC gap of Aluminum





# Detection of magnetic order in $Fe_{1.08}$ Te by STM

- Topographic image without magnetic contrast
- Excess iron atoms (bright spots) clearly visible in between Te atomic rows



 Topographic image after picking up a magnetic cluster showing the magnetic contrast of unidirectional commensurate modulation at q<sub>AFM</sub>(±1/2, 0)



Enayat, Zhang, Singh et al., Science 345, 653 (2014)

# UHV-Variable Temperature STM (22K-300K)





Andreas Eich, Thesis (2014)

Photo of the VT-STM



#### Preparation of sample



# CVD graphene/hBN based field effect transistor



Sketch of graphene on hBN (GohBN) and microwaves (red wiggled lines) are coupled to the device.



- Charge Neutrality Point
- Massless Dirac charge carriers
- Very high mobility (100,000 cm<sup>2</sup>/V.s)

#### Singh et al., PRB 102, 245134 (2020)



#### Optical micrograph of GohBN Hall bar



- Landau levels at finite magnetic fields (parameters: T = 1.32 K and I<sub>DS</sub> = 5 nA)
- Inset: poor mobility (1150 to 1200 cm<sup>2</sup>V<sup>-1</sup> s<sup>-1</sup>) due to scattering of charge carriers from wrinkles and folds



### Graphene-based Josephson junctions (GJJ)



- GJJ can work as a single photon detector in the GHz frequency range due to very small heat capacity of graphene at the Dirac point.
- It can play a pivotal role in detecting ultra-low energy particles in dark matters such as axions.
- ✤ GJJ can provide more frequency-stable superconducting qubit in qunatum computing.

#### Unpublished data

## Integration of graphene JJ into CPW circuits



A transfer system of graphene and other van der Waals materials (Constructed by Chithra)



Integration of JJ into superconducting CPW circuits and trying to investigate them under microwave irradiations at low temperatures

# High-quality-biomass-graphene-kn95-mask





## Schematic representation of a cryoplatform in Hera North Hall



#### Jörn Schaffran, Christoph Reinhardt, and Axel Lindner

Jörn et al. heal load document

# Accelerator Module Test Facility (AMTF)

## DESY is acting for XFEL company Manufacturer: DeMaCO





Sub-Cooler Box XASB





Valve Box XAVB

#### Wessington Cryogenics Ltd, UK





L Helium Dewar XAST

Courtesy: Dr. S. Putselyk, DESY

# MADMAX (Magnetized Disc and Mirror Axion Experiment)



Jörn Schaffran and Dr. Axel Lindner

https://alps.desy.de/our\_activities/axion\_wisp\_experiments/madmax/

# Transition-edge sensor (TES)



https://alps.desy.de/our\_activities/axion\_wisp\_experiments/alps\_ii/detector/

## **Other activities**



- exploring new places and cultures
- Learning German language B2 level

# Thank you very much for your attention!!!