How Type Ia supernovae probe large scale structures

Valéry Brinnel | APR. 2021

1. Ia cosmology 2. SNe Ia 3. ZTF 4. AMPEL 5. Bulk Flow

SNe la cosmology

 $d_L(z) = (1+z) rac{c}{H_0} \int_0^z rac{dz'}{\sqrt{\Omega_{
m r_0} (1+z')^4 + \Omega_{
m m_0} (1+z')^3 + \Omega_{\Lambda_0}}}$ HST SNLS SDSS 10-1 100 Z.

(flat universe)

Betoule et al. 2014

ACDM concern: H₀

Credit: Gómez-Valent

ACDM concern: bulk flow

We move with ~300km/s wrt to CMB frame

ACDM concern: bulk flow

Is there a large bulk flow beyond Shapley ? (would break ΛCDM)

In CMB frame, the Local Group moves at ~ 600 km/s, why?

SNe Ia are standardisable

201 SNe Ia with 0.02 < z < 0.10, measured by *SNfactory*

Stretch

Linear correlation between decline-rate and absolute magnitude (Phillips 1993)

Standardisation

Lightcurve parameters

Peak magnitude in rest-frame B-band

Standardised distance modulus

So far everything looks good for ZTF data

Stretch Color $\mu = m_B - (M_B - a \times x1 + \beta \times c)$

Global fit parameters

"Mass step"

Childress et al. 2013

Third parameter

Lightcurve parameters

Peak magnitude in rest-frame B-band

Stretch

Standardised distance modulus

Environmental parameters

Environments evolve

Galaxies are more star forming at higher redshift

Local perspective

GLOBAL

Spiral, Star Forming, host galaxies

RA (deg)

Rigault et al. 2013

LOCAL

Star Formation

Young Stars

No Star Formation

Older Stars

local Star formation rate / *local* stellar mass

Fraction of young star at the SN location

"Age step"

>

ACDM concerns: Ho

Riess et al. 2016

Rigault 2018

Zwicky Transient Facility

Palomar

Zwicky Transient Facility

48" mirror

576 megapixels

Shutter at DESY

The focal plane is so big that the shutter blades would obstruct much of the beam, so the shutter is instead at the entrance to the telescope. It opens in just 340 ms and applies only a few grams of reaction force to the telescope

KEY INFORMATION

47 square degree field (on 2 grids ; 1 main + extra)

16 E2V 6k x 6k CCDs (2 different coatings)

1 Pixel ~ 1 arcsec (typical seeing ~2arcsec)

30s exposure + 15s slew

~20.5 mag (5 σ) per exposure (slightly better in R)

Robotic arm in action

Field of view

ZTF | 2018-2021+ | ~2000 SNeIa z<0.1 — LSST | 2022-2032 | 200 000 SNeIa<0.3 +WFIRST (space telescope 2030+ ~1000 SNeIa z>1)

ZTF18abltaxf - z~0.07 SNe Ia

r = 18.8 (2.3 d) Upload New Photometry

z = 0.06 Upload New Spectroscopy DM (approximate) = 37.11

ZTF data

Data Access | - MSIP: Alert, public right away | Pixels 6 month embargo - Partner+: Alert, not public | Pixels 18 month embargo

PUBLIC SURVEY "MSIP"

2 Filters (g, r)

6400 sqdeg every 3 days (in both bands!)

Alerts public right away (all transients discovered within MSIP)

> + Galactic plane (August mainly)

PARTNERSHIP & CALTECH

High cadence fields (g,r) (4x the same field every night)

Third filter mapping MSIP (*4 days cadence*; *For Cosmology mainly*)

ToO | GW, Neutrino, GRB

Galactic Plane + M31 (Mainly August)

Alert

Kafka stream hosted by UW *i.e. the LSST stream*

Zwicky Transient Facility

DR5:

- ~24.8 million single-exposure images
- ~153,000 co-added images accompanying source catalog files containing
- ~350 billion source detections extracted from those images
- ~3.6 billion lightcurves constructed from the single-exposure extractions

Up to 500 000 alerts / night

Observing the full visible extra-galactic sky in half a night

FILTER Which alerts are potentially interesting?

CORRELATE **Only relevant for multi-messenger science**

AUGMENT **Evaluate/derive transient properties**

> REACT What reaction to trigger ?

T2

AMPEL Process Flow

Nordin et al. 2019

SNe reported by AMPEL

CORRELATE

AUGMENT Get host redshift, compute lightcurve template

> SYNTHESISE Fit α and β, standardise, fit dipole

TO

ADD Add confirmed la from TNS

ZTF cosmology sample

Un-targeted sample

Targeted Surveys

Sealed by Erol. Fed and James E. Games — Organight. #1999 Primaton University Press

Dipole velocity model (Bonvin et al. 2006)

$$\tilde{d}_{\rm L}(z, \vec{n}, \vec{v}_{\rm d}) = d_{\rm L}(z) + \frac{(1+z)^2}{H(z)} \vec{n} \cdot \vec{v}_{\rm d}$$

Isotropic universe

Effect of Bulk flow

Bulk Flow

$$\chi^2 = \sum_{i} \frac{\left|\mu_i - 5\log\left(\tilde{d}_{\mathrm{L}}(z_i, \vec{n}_i, \vec{v}_{\mathrm{d}})/10\mathrm{pc}\right)\right|^2}{\sigma_i^2}$$

Minimize χ^2 to find velocity

Shear Model

Credit: Uli Feindt

Velocity tidal field:

- Can estimate distance to attractor as convergence of velocity lines

Spherical attractor

Adds 6 new parameters (1 monopole, 5 quadrupole/shear)

Growth of structure

Distance Modulus μ

Simulated local universes

CDM + GR

 $f\sigma_8 = 1$

Huterer et al., 2013

Growth of structures

Simulated local universes

60 **Growth rate of structures** 55 -50 -45 -40 35 -30 -25 0.00

 $\Lambda CDM + GR$ $f\sigma_8 = 0.42$

Huterer et al., 2013

Test GR + CDM

Credit: R. Graziani

Peculiar Velocities | Testing General Relativity

Graziani et al. In prep

