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Abstract

Simulators often provide the best description of real-world phenomena. However,
the density they implicitly define is often intractable, leading to challenging inverse
problems for inference. Recently, a number of techniques have been introduced in
which a surrogate for the intractable density is learned, including normalizing flows
and density ratio estimators. We show that additional information that characterizes
the latent process can often be extracted from simulators and used to augment the
training data for these surrogate models. We introduce several new loss functions
that leverage this augmented data, and demonstrate that these new techniques can
improve sample efficiency and quality of inference.
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We present powerful new analysis techniques to constrain effective field theories at the LHC.
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improve the precision of the LHC legacy constraints.

3

Jul 2018

. S —— s uonassaang €S £O cONstrain theory para-
meters in collider experiments. By harnessing the latent-space structure of particle physics
processes, we extract extra information from the simulator. This augmented data can be
used to train neural networks that precisely estimate the likelihood ratio. The new methods
scale well to many observables and high-dimensional parameter spaces, do not require any
approximations of the parton shower and detector response, and can be evaluated in micro-
seconds. Using weak-boson-fusion Higgs production as an example process, we compare the
performance of several techniques. The best results are found for likelihood ratio estimators
trained with extra information about the score, the gradient of the log likelihood function with
respect to the theory parameters. The score also provides sufficient statistics that contain
all the information needed for inference in the neighborhood of the Standard Model. These
methods enable us to put significantly stronger bounds on effective dimension-six operators
than the traditional approach based on histograms. They also outperform generic machine
learning methods that do not make use of the particle physics structure, demonstrating their
potential to substantially improve the new physics reach of the LHC legacy results.
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MadMiner: Machine learning—based inference for particle physics
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Precision measurements at the LHC often require analyzing high-dimensional event data for
subtle kinematic signatures, which is challenging for established analysis methods. Recently,
a powerful family of multivariate inference techniques that leverage both matrix element
information and machine learning has been developed. This approach neither requires the
reduction of high-dimensional data to summary statistics nor any simplifications to the under-
lying physics or detector response. In this paper we introduce MadMiner, a Python module
that streamlines the steps involved in this procedure. Wrapping around MadGraph5_aMC
and Pythia 8, it supports almost any physics process and model. To aid phenomenological
studies, the tool also wraps around Delphes 3, though it is extendable to a full Geant4-
based detector simulation. We demonstrate the use of MadMiner in an example analysis of
dimension-six operators in ttH production, finding that the new techniques substantially
increase the sensitivity to new physics.

Simulation-based inference methods for particle physics
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Our predictions for particle physics processes are realized in a chain of
complex simulators. They allow us to generate high-fidelty simulated
data, but they are not well-suited for inference on the theory param-
eters with observed data. We explain why the likelihood function of
high-dimensional LHC data cannot be explicitly evaluated, why this
matters for data analysis, and reframe what the field has traditionally
done to circumvent this problem. We then review new simulation-based
inference methods that let us directly analyze high-dimensional data by
combining machine learning techniques and information from the sim-
ulator. Initial studies indicate that these techniques have the potential
to substantially improve the precision of LHC measurements. Finally,
we discuss probabilistic programming, an emerging paradigm that lets
us extend inference to the latent process of the simulator.




_ Feynman diagrams and the matrix element is not the full story _
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Simulation-based inference methods

Multi-variate analysis: MEM, BDT, general NN
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Parton-level convolution:

Models are often implicit, meaning no explicit likelihood function p(x | &) that describes
how observable variables x depend on model parameters 6.

Rather, they come only in form of an architecture of simulators, that takes in parameters
0 and simulates variables x.



Table 1. Dictionary of symbols that appear in this review (derived from Ref. [7]).
Symbol Meaning ML abstraction

0 Theory parameters Parameters of interest
x All observables Features

v 1-2 selected kinematic variables Summary statistics

Zp Parton-level four-momenta Latent variables

Zs Parton shower history Latent variables

Zd Detector interactions Latent variables

2z = (2p, Zs, 2d)

Full simulation history of event

All latent variables

Pfull ({x}|9)

Full likelihood function, see Eq. (2)

Implicit density

p(x|0) Kinematic likelihood for single event Implicit density
(normalized fully differential xsec, Eq. (3))

pp(2p|0) Parton-level distribution Tractable density

ps(2zs|zp) Parton-shower effects Implicit density

pa(zs|zp) Detector effects Implicit density

Pz (T|24q) Detector readout Implicit density

r(x|0) Likelihood ratio function, see Eq. (4)

r(x, z|0) Joint likelihood ratio, see Eq. (8) Unbiased est. of r(x|6)

t(x) Score (locally optimal obs., Eq. (10))

t(z, z|0) Joint score, see Eq. (9) Unbiased est. of score

0 Best fit for theory parameters Estimator for 6

p(x|6) Parameterized estimator for likelihood
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Parameterized estimator for likelihood ratio
Parameterized classifier decision function
Estimator for score

Approximate shower and detector effects
(transfer function)




Example: Nomalizing-flow (neural density estimation), kernel density estimation (low-dimension only)

Supports arbitrary simulators without requiring approximations on the underlying physics and is

amortized, allowing for an efficient evaluation after an upfront simulation and training cost.

“Likelihood-ratio” trick: training with reference point (e.g. EFT{6}/SM).
easier when concerning 6 with only the interested handful of NP d.o.f deviation from reference pt.

With binary cross-entropy as loss function (CARL)

Still amortized, allows for reweighing, sample efficient, but cannot generate new samples without LL.
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Loss function of 2(x) that approaches a true g(x, 2):
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Abstract workflow of simulation-based ML optimiser:
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1. EVENT GENERATION

2. OBSERVABLES

5A. FISHER INFO 4. ML 3. SAMPLING

5B. INFERENCE

Input / Output

Physics process,
theory model,

MadMiner classes

External simulators

simulation setup

Parameter space,
benchmarks,
morphing,

nuisance parameters

Observables,

e
cuts

Sampling setup —»

Parameters ——p

Fisher information ¢—

Observed events,
parameter grid

Best fit, p-values ¢——

1907.10621 (MadMiner_Workflow)

Files

MadGraph cards
(.dat)

A\ 4
. Parton-level events
MadMiner —> MadGraph —> (lhe)
. Hadron-level events
Pythia —> (hepmc)
<
DelphesReader —> Delphes —> Sleizgi il Rers
(.root)
<
¢
SampleAugmenter
> Training data
(.npy)
LikelihoodEstimator |«
RatioEstimator
ScoreEstimator .
Ensemble < > Trqmed ML model
(.json, .pt, .npy)
«
<
FisherInformation
«
<

AsymptoticLimits

MadMiner file (.h5)
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joint likelihood ratio and joint score,
that are conditional on a particular
stochastic execution trace z
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t(z) = Vg logp(z|0)
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