Full Run 2 analysis of Higgs boson decay to b-quarks in CMS

DESY: R. Mankel, A. Nigamova^{*}, Elisabetta Gallo^{*}, <u>H. Kaveh</u> RWTH: A. Schmidt ^{*}(Also Univ. of Hamburg)

Introduction

- $H \rightarrow$ bb uniquely measures Yukawa coupling to b quarks
- Largest branching fraction ~58%
- VH production: best triggering and background rejection
- H->bb first observed in 2018, by ATLAS and CMS
- Here: Run 2 legacy result, focus on measurement of Simplified Template Cross Sections

VHbb Analysis

- 3 channels are considered:
 - 0-lepton (Z-> $\nu\nu$), 1-lepton (W-> $l\nu$) and 2 lepton (Z->l+l-)
- 2 Higgs decay topologies:
 - two distinct b-quark jets ("resolved")
 - one "fat" jet containing two b candidates ("boosted")
- Background normalisation for the signal region (SR) is derived from orthogonal control regions (CR) :
 - tt
 - V+HF(heavy flavor)
 - V+LF (lighter flavors)
 - SR (DNN (resolved)/BDT (boosted))
- Extensive use of machine learning both for V+HF CR and SR
- Using the S/B separating DNN discriminant as the observable
- Analysis in STXS stage 1.2 bins for the VH process

STXS Framework

- Allows combination of all Higgs decay channels
- Minimises dependence on theory systematics entering the measurement
- Measurements can be easily interpreted using various theory frameworks

VHbb Run 2 Analysis signal STXS bins

- VHbb Run 2 Analysis signal STXS bins (deviations from the default scheme):
 - Modified based on experimental sensitivity
 - Reco-level signal regions are introduced to match gen-reco categories
 - Higgs boosted topology is included to the signal categories with $p_T(V) > 250 \text{ GeV}$

Full Run 2 expected sensitivity for VH(H->bb) and VZ(Z->bb)

• On the right, the VZ(Z->bb) cross-check blinded results:

- similar topology (besides mass) with higher cross section
- same analysis strategy (only differences: mass window, dedicated, re-trained DNNs/BDTs)
- On the bottom, current status of the measurement for the expected signal strength(setting mu to 1)

m(bb) based cross-check analysis

- DNN discriminant as an observable strongly "sculpts" the invariant mass distribution
 - Solution: decorrelate the DNN from mass-related quantities
 - Find mass-decorrelated variables -> fix to the mean values
- Unbiased m(bb) distribution as analysis observable
- This method keeps the DNN discrimination power

Full Run 2 analysis of Higgs boson decay to b-quarks in CMS, H.Kaveh

m(bb) cross-check analysis strategy

- Only 2 control regions (since V+HF cannot be used):
 - **t**
 - V+LF
- 3 signal regions with different purity:
 - defined as intervals of mass-decorrelated DNN discriminant
 - 2 Cuts on Mass decorelated DNN
 - Cuts found by maximizing Assimov median significance
 - Simultaneous fit of SR+CR for m(bb)

m(bb) based analysis result

• the blinded m(bb) cross-check analysis plot for combined results

Summary

- Analysis strategy and the expected sensitivity presented for full
- Run 2 VHbb STXS measurement
- VZ(Z->bb) and m(bb) cross-check analyses also shown
- One can clearly see an improvement wrt. the previous VHbb analysis
- Strategy is converged. Significant improvement wrt. the previous VHbb analysis
 - In the process of unblinding all the regions
- The full Run 2 STXS measurement of VH process will provide an important input for further theoretical interpretations and for the combination with ATLAS results