Timing with the CALICE AHCAL & SiPM-on-Tile Technology

Lorenz Emberger, Fabian Hummer, Frank Simon BMBF Scintillator R&D general meeting

MAX-PLANCK-INSTITUT FÜR PHYSIK

Scintillator Timing Setup

Motivation: Understand contribution of front end and SiPM-on-Tile on time resolution of the AHCAL

Lorenz Emberger

Strategy: Measure the time resolution of the SiPM-on-Tile technology:

- Independent of the AHCAL electronics and DAQ
- In a simple but modular setup
- Without involved calibration and reconstruction procedures
- With high particle rate and controlled energies

	Beam	Test S	etup	
Stack of 4	Tiles:			
 BC408 or Polystyrene (AHCAL) 				
 Hamamatsu S13360-1325PE 			Picosc	
E	Ethernet Cat 7			
Receiver Box:		Receive		
 USB cor 	ntrolled powe	er supply		
 Split sign 	nal and powe	er lines	Trigger Cha	
	BNC		Tile Chan Tile Chan	
Picoscope			Trigger Cha	
• Up to 2.	5GHz sampli	ng rate on	4 channels	
• 300kHz	peak trigger	rate		

• Save complete analog waveform

MIP Time Resolution - AHCAL Scintillator

Lorenz Emberger

MAX-PLANCK

Time resolution=0.718/sqrt(2)=0.507ns

Interpret as intrinsic time resolution of SiPM-on-Tile

Compared to 0.780ns of the AHCAL:

• AHCAL front-end contributes at least 0.6ns

Energy Binned Time Resolution

Studied Scenarios:

- AHCAL Scintillator 30mm x 30mm x 3mm
- BC408 30mm x 30mm x3mm and 20mm x 20mm x 3mm

MAX-PLANC

Poissonian statistics well reproduced:

Material and size dependent

Noise contribution to be understood Sub 100ps for very high signals

Optical GEANT4 Simulation + GOSSiP SiPM simulation:

- Reproduce analog signal waveforms
- Understand electronic effects of the setup
- Understand size dependence of the time resolution

Preparations for next beam test:

- Study fast Bicron scintillators
- Study different tile dimensions
- Establish scaling of the time resolution with respect to the tile size

Muon/Pion Separation with the DUNE Gaseous Argon ND

Lorenz Emberger **BMBF Scintillator R&D general meeting**

0

MAX-PLANCK-INSTITUT FÜR PHYSIK

MAX-PLAN

Common interactions on argon target:

 Momentum and charge reconstruction of charged particles in TPC

 Reconstruction of photons and neutrons in highly granular scintillator ECAL

• 0.5T solenoid field

 Surrounded by a yoke and muon detector (technology tbd)

ECAL Design Drivers

Key roles of the ECAL:

Pions and muons produced simultaneously:

- 1. Photon reconstruction
- 2. Neutron identification
- 3. Muon/Pion separation (with muon detector)

MAX-PLANC

- Charged pions and muons have almost same mass
- Similar energy loss per unit length
- Separation not possible in TPC at momentum > 250MeV

Misidentification of muon and pion will lead to wrong reconstruction of the energy and nature of the interaction \rightarrow joint task of ECAL and muon detector

Neutral current production of Δ baryons:

- $\Delta^+ \rightarrow \pi^+ + n$
- $\Delta^0 \rightarrow \pi^- + p$

Misidentification of π^{\pm} leads to errors on cross-section

Muon/Pion separation is also important for standalone measurements of ND-GAr

Deep-Inelastic neutral current scattering

ECAL Concept

- 12-sided geometry, 42 Layers
- Key design features:
 - High granular layers based on CALICE R&D (AHCAL SiPM-on-tile design)
 - First 8 layers with 0.7 mm Lead / 5 mm plastic scintillator tiles of 2.5x2.5 cm²
 - 34 layers with crossed strips in the back based on Mu2e with 1.4 mm Lead / 10 mm scintillator
 - 4 cm strip width spanning the full module width/ length (~few m)
- SiPM readout of ~1- 3M channels

Initial Considerations

Approximate Material budget:

Cryostat	9cm Steel ≙ 0.5λ
ECAL absorber	5.3cm Pb≙ 0.27λ
Magnet:	4cm Al ≙ 0.08λ
Return yoke	15cm Fe ≙ 0.75λ
Scintillator	38.5cm PS ≙ 0.4λ
Total	2.0λ

 $P_{PunchThrough} = exp(-2.0)=0.135$

Initial Considerations

Actual data from CALICE AHCAL beam test

Showering muon, hard delta electron

Confusion with pion shower

Pion causing small shower

May look like a muon, if only a small shower develops in the detector

Monte Carlo samples produced with GENIE event generator:

- Momentum cut at 250MeV, TPC can classify tracks of lower momentum
- Rejection of decaying particles:

$$\pi^+ \to \mu^+ + \nu_\mu$$

$$\mu^- \rightarrow e^- + \overline{\nu_e} + \nu_\mu$$

Rejection is based on mc truth:

Pions by looking for creation of muon neutrino in TPC volume

Muons by looking for creation of electron anti-neutrino in TPC volume

Muon/Pion Separation with BDT

Monte Carlo samples produced with GENIE event generator:

- Training with 50/50 ratio of muons and pions
- Testing with "realistic" muon/pion ratio of 86%/14% from GENIE

Performance with Full MulD

Detection threshold=0.5

~14% of 81950 pions misidentified

~4.9% of 528316 muons misidentified

Performance with Full MulD

Results using GENIE momentum spectrum

Baseline performance \rightarrow investigate impact of MuID

Impact of the MuID

Lorenz Emberger

APS April Meeting - 19.04.2021

Conclusion

Muon/Pion separation is important for neutrino energy measurement and to reconstruct the nature of the interaction

Full MuID performance:

- ~98% to 99% efficiency/purity for muons above 1GeV
- ~80% to 85% efficiency/purity for pions above 1GeV

MuID significantly increases the performance by:

- up to 25% for pion purity
- ~5% to 8% for pion efficiency

No dramatic loss of performance when excluding the inner MuID layer

At least two MuID layers are desirable

Lorenz Emberger

Backup

Lorenz Emberger

MAX-PLANCK-INSTITUT FÜR PHYSIK

Lorenz Emberger

MAX-PLANCK-

AHCAL vs. BC408 vs. small BC408

Channel C AHCAL:14.3 pe/MIP BC408: 22.87 pe/MIP BC408small: 21.85 pe/MIP

AHCAL vs. BC408 vs. small BC408

Lorenz Emberger

Channel E AHCAL:16.4 pe/MIP BC408: 19.3 pe/MIP BC408small: 23.9 pe/MIP

Hadronic Interaction

Nuclear interaction length λ : Mean free path before inelastic interaction

- Typically several 10cm in metal, depends on element
- Depends on incoming hadron, e.g. Proton: $\lambda_{\text{Iron}}=16.77$ cm, Pion: $\lambda_{\text{Iron}}=20.42$ cm

Punch through probability: Probability of no inelastic interaction in the detector

```
PPunchThrough = \exp(-\lambda)
```


- Particle multiplication after inelastic interaction:
- Charged hadrons
- Neutral pions \rightarrow electrons/positrons
- Higher charged particle density leads to high energy calorimeter hits

