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Scintillator Timing Setup
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Single channel resolution: 1.1/√2 = 0.78ns
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ILC Mode

CALICE AHCAL 
Work in Progress

Motivation: Understand contribution of front end 
and SiPM-on-Tile on time resolution of the AHCAL 

• Independent of the AHCAL 
electronics and DAQ


• In a simple but modular setup


• Without involved calibration and 
reconstruction procedures


• With high particle rate and 
controlled energies

Strategy: Measure the time resolution of the 
SiPM-on-Tile technology:


AHCAL large technological prototype



APS April Meeting - 19.04.2021Lorenz Emberger

Beam Test Setup
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Beam

Trigger Channel A

Trigger Channel G 

Tile Channel C
Tile Channel E

Receiver Box

Picoscope

Stack of 4 Tiles:

• BC408 or Polystyrene (AHCAL)

• Hamamatsu S13360-1325PE 

Receiver Box:

• USB controlled power supply

• Split signal and power lines

Ethernet Cat 7

Picoscope:

• Up to 2.5GHz sampling rate on 4 channels

• 300kHz peak trigger rate

• Save complete analog waveform

BNC
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MIP Time Resolution - AHCAL Scintillator
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Time resolution=0.718/sqrt(2)=0.507ns


• Interpret as intrinsic time resolution of 
SiPM-on-Tile

CALICE AHCAL 
Work in Progress

CALICE AHCAL 
Work in Progress

CALICE AHCAL 
Work in Progress

Compared to 0.780ns of the AHCAL:


• AHCAL front-end contributes at least 0.6ns
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Energy Binned Time Resolution
Studied Scenarios:


• AHCAL Scintillator 30mm x 30mm x 3mm


• BC408 30mm x 30mm x3mm and 20mm x 20mm x 3mm

Poissonian statistics well reproduced:


• Material and size dependent


Noise contribution to be understood


Sub 100ps for very high signals 

AHCAL

BC408

Small 
BC408

CALICE AHCAL 
Work in Progress
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Ongoing Development 
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Optical GEANT4 Simulation + GOSSiP SiPM simulation:


• Reproduce analog signal waveforms 


• Understand electronic effects of the setup


• Understand size dependence of the time resolution 

Preparations for next beam test:


• Study fast Bicron scintillators 


• Study different tile dimensions


• Establish scaling of the time resolution with respect to the tile size 



Muon/Pion Separation with the 
DUNE Gaseous Argon ND

Lorenz Emberger

BMBF Scintillator R&D general meeting
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Common interactions on argon target:


• Momentum and charge reconstruction 
of charged particles in TPC


• Reconstruction of photons and neutrons 
in highly granular scintillator ECAL


• 0.5T solenoid field


• Surrounded by a yoke and muon 
detector (technology tbd)

ND-GAr Design

TPC
ECAL
Yoke



APS April Meeting - 19.04.2021Lorenz Emberger

ECAL Design Drivers
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Pions and muons produced simultaneously:

• Charged pions and muons have 
almost same mass 


• Similar energy loss per unit 
length


• Separation not possible in TPC 
at momentum > 250MeV

Misidentification of muon and pion will lead to wrong reconstruction of the 
energy and nature of the interaction→joint task of ECAL and muon detector

Key roles of the ECAL:


1. Photon reconstruction


2. Neutron identification


3. Muon/Pion separation 
(with muon detector)

9
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ECAL Design Drivers
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Neutral current production of Δ baryons:


• Δ+→𝜋++n


• Δ0→𝜋-+p


Misidentification of 𝜋± leads to errors on 
cross-section 

Deep-Inelastic neutral current scattering

Muon/Pion separation is also important for standalone measurements of ND-GAr

10
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ECAL Concept
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• 12-sided geometry, 42 Layers


• Key design features:


• High granular layers based on CALICE R&D 
(AHCAL SiPM-on-tile design)


• First 8 layers with 0.7 mm Lead / 5 mm plastic 
scintillator tiles of 2.5x2.5 cm2


• 34 layers with crossed strips in the back based on 
Mu2e with 1.4 mm Lead / 10 mm scintillator


• 4 cm strip width spanning the full module width/
length (~few m)


• SiPM readout of ~1- 3M channels
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Initial Considerations
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Simulated muon/pion ratio:


• 86% muons


• 14% pions

PPunchThrough = exp(-2.0)=0.135

~2% fake muons from pions if:


• All muons are tagged correctly


• All inelastic pion interactions are 
resolved

Cryostat 9cm Steel ≙ 0.5𝝀

ECAL absorber 5.3cm Pb≙ 0.27𝝀
Magnet: 4cm Al ≙ 0.08𝝀

Return yoke 15cm Fe ≙ 0.75𝝀

Scintillator 38.5cm PS ≙ 0.4𝝀

Total 2.0𝝀

Approximate Material budget:

12
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Initial Considerations
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Showering muon, hard delta electron

Confusion with pion shower

Pion causing small shower 

May look like a muon, if only a small 
shower develops in the detector  

Actual data from CALICE AHCAL beam test

13



APS April Meeting - 19.04.2021Lorenz Emberger 14

Muon/Pion Separation with BDT

• Rejection of decaying particles:



π+ → μ+ + νμ

μ− → e− + νe + νμ
Rejection is based on mc truth:


Pions by looking for creation of muon 
neutrino in TPC volume


Muons by looking for creation of 
electron anti-neutrino in TPC volume

Monte Carlo samples produced with GENIE event generator:


• Momentum cut at 250MeV, TPC can classify tracks of lower momentum
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Muon/Pion Separation with BDT
Monte Carlo samples produced with GENIE event generator:


• Training with 50/50 ratio of muons and pions


• Testing with “realistic” muon/pion ratio of 86%/14% from GENIE

DUNE 
Work in Progress



APS April Meeting - 19.04.2021Lorenz Emberger

Performance with Full MuID
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Detection threshold=0.5


~14% of 81950 pions misidentified


~4.9% of 528316 muons misidentified

DUNE 
Work in Progress

DUNE 
Work in Progress

Results using GENIE momentum spectrum
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Performance with Full MuID
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DUNE 
Work in Progress

DUNE 
Work in Progress

Baseline performance  → investigate impact of MuID

Results using GENIE momentum spectrum
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Impact of the MuID
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1: inner layer


2: middle layer


3: outer layerMuons

Muons Pions

Pions

Results using GENIE momentum spectrum
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Conclusion
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Muon/Pion separation is important for neutrino energy measurement and to 
reconstruct the nature of the interaction


Full MuID performance:


• ~98% to 99% efficiency/purity for muons above 1GeV


• ~80% to 85% efficiency/purity for pions above 1GeV


MuID significantly increases the performance by:


• up to 25% for pion purity


• ~5% to 8% for pion efficiency


No dramatic loss of performance when excluding the inner MuID layer


At least two MuID layers are desirable 
19
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Backup
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Energy Binned Time Resolution
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1.1 to 1.3MIP
AHCAL

0.7 to 0.9MIP
AHCAL

0.9 to 1.1MIP
AHCAL

0.5 to 0.7MIP
AHCAL

Distributions get 
narrow and more 
gaussian like
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AHCAL vs. BC408 vs. small BC408 
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Channel C

AHCAL:14.3 pe/MIP


BC408: 22.87 pe/MIP

BC408small: 21.85 pe/MIP
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AHCAL vs. BC408 vs. small BC408 
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Channel E

AHCAL:16.4 pe/MIP

BC408: 19.3 pe/MIP


BC408small: 23.9 pe/MIP
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Hadronic Interaction

𝜋±

Nuclear interaction length 𝝀: Mean free path before inelastic interaction


• Typically several 10cm in metal, depends on element


• Depends on incoming hadron, e.g. Proton: 𝝀Iron=16.77cm, Pion: 𝝀Iron=20.42cm

Particle multiplication after inelastic interaction:


• Charged hadrons


• Neutral pions → electrons/positrons


Higher charged particle density leads to high 
energy calorimeter hits

Punch through probability: Probability of no inelastic interaction in the detector


PPunchThrough = exp(-𝝀) 


