NNPDF 2.0: NLO global fit using the NNPDF methodology

Alberto Guffanti Albert-Ludwigs-Universität Freiburg

On behalf of the NNPDF Collaboration:

R. D. Ball, L. Del Debbio, M. Ubiali (Edinburgh), S. Forte, J. Rojo (Milano), J. I. Latorre (Barcelona)

Terascale Alliance - PDF group DESY, Zeuthen, March 30, 2010

NNPDF Methodology

Main Ingredients

Monte Carlo determination of errors

- No need to rely on linear propagation of errors
- Possibility to test for non gaussianity of data
- Possibility to test for non-gaussian behaviour in fitted PDFs
 - (1 σ vs. 68% CL)

Neural Networks

• Provide an unbiased parametrization

Stopping based on Cross Validation

• Ensures proper fitting avoiding overlearning

Dataset

3415 data points

(for comparison MSTW08 includes 2699 data points)

OBS	Data set		
Deep Inelastic Scattering			
F_2^d/F_2^p	F_2^d/F_2^p NMC-pd		
F_2^p	NMC		
-	SLAC		
	BCDMS		
F_2^d	SLAC		
_	BCDMS		
σ_{NC}^+	ZEUS		
	H1		
σ_{NC}^{-}	ZEUS		
	H1		
F _L	H1		
$\sigma_{\nu}, \sigma_{\bar{\nu}}$	CHORUS		
dimuon prod.	NuTeV		
Drell-Yan & Vector Boson prod.			
$d\sigma^{\rm DY}/dM^2 dy$	E605		
$d\sigma^{\rm DY}/dM^2 dx_F$	E866		
W asymm.	CDF		
Z rap. distr.	D0/CDF		
Inclusive jet prod.			
Incl. $\sigma^{(jet)}$	$CDF(k_T)$ - Run II		
Incl $\sigma^{(jet)}$	D0 (cone) - Bun II		

Ð

- Fast DGLAP evolution based on higher-order interpolating polynomials
- Improved treatment of normalization errors (t₀ method)
 - For details see [R. D. Ball et al., arXiv:0912.2276]
- Improvements in training/stopping
 - Target Weighted Training
 - Improved stopping for avoiding under-/over-learning

- Inclusion of higher order corrections to hadronic processes in parton fits is often too expensive
- Often higher order corrections are included as (local) K factors rescaling the LO cross section
- We use FastNLO for inclusive jet cross section
- We developed our own FastDY for fixed target Drell-Yan and vector boson production at colliders

Relative Accuracy w.r.t to Exact calc.

Results General features of the fit

Construction of the constr

orest orest orest of a start

NNPDF 2.0

Partons - Comparison to older NNPDF set

A. Guffanti (Univ. Freiburg)

NNPDF 2.0

Partons - Comparison to other global fits

A. Guffanti (Univ. Freiburg)

NNPDF 2.0

Results - Partons - A couple of upshots

 Reduction of uncertainties with respect to older NNPDF sets due to inclusion of new data

Results - Partons - A couple of upshots

 Reduction of uncertainties with respect to older NNPDF sets due to inclusion of new data

• Uncertainties on PDFs competitive with results from other groups ...

Results - Partons - A couple of upshots

 Reduction of uncertainties with respect to older NNPDF sets due to inclusion of new data

• Uncertainties on PDFs competitive with results from other groups ...

 ... but still retain unbiasedness in regions where there are little or no experimental constraints

Results - Quantitative assesment of impact of modifications

• We define the **distance** between central values of PDFs

$$m{d}(m{q}_j) = \sqrt{\left\langle rac{\left(\langle m{q}_j
angle_{(1)} - \langle m{q}_j
angle_{(2)}
ight)^2}{\sigma_1^2 [m{q}_j] + \sigma_2^2 [m{q}_j]}
ight
angle_{N_{
m part}}}$$

and the similarly for Standard Deviations.

Results - Quantitative assesment of impact of modifications

• We define the **distance** between central values of PDFs

$$m{d}(m{q}_j) = \sqrt{\left\langle rac{\left(\langlem{q}_j
angle_{(1)} - \langlem{q}_j
angle_{(2)}
ight)^2}{\sigma_1^2[m{q}_j] + \sigma_2^2[m{q}_j]}
ight
angle_{N_{
m part}}}$$

and the similarly for Standard Deviations.

- Comparisons we have performed for NNPDF2.0
 - NNPDF1.2 vs. NNPDF1.2 + minimization/training improvements
 - Improved NNPDF1.2 vs. Improved NNPDF1.2 + t₀-method
 - Fit to DIS dataset with H1/ZEUS data vs. Fit with HERA-I combined
 - Fit to DIS dataset vs. Fit to DIS+JET
 - Fit to DIS+JET vs. NNPDF2.0 final

Results Impact HERA-I combined dataset

- Overall fit quality to the whole dataset is good (χ² = 1.14)
 - $\sigma_{\rm NC}^+$ dataset has relatively high $\chi^2 \sim 1.3$
 - $\sigma_{\rm CC}^-$ dataset has very low $\chi^2 \sim 0.55$
- Same χ^2 -pattern observed in the HERAPDF1.0 analysis
- Impact on PDFs is moderate, affecting mainly Singlet and Gluon at small-x

Impact of Tevatron inclusive Jet data

- We include Tevatron Run-II inclusive jet data
- They provide a valuable constrain on large-x gluon
- No signs of tension with other datasets included in the analysis
- Run-I data not included but compatibility with the outcome of the fit has been checked

Impact of Drell-Yan and Vector Boson production data

- Good description of fixed target Drell-Yan data (E605 proton and E886 proton and p/d ratio)
- Vector boson production at colliders (CDF W-asymmetry and Z rapidity distribution) harder to fit
- All valence-type PDF combinations are affected by these data
- Sizable reduction in the uncertainty of the strange valence (possible impact on NuTeV anomaly)

Phenomenological implications

• LHC standard Candles

	$\sigma(W^+)$ Br $(W^+ \rightarrow l^+ \nu_l)$	$\sigma(W^-) \operatorname{Br} \left(W^- \to l^+ \nu_l \right)$	$\sigma(Z^0) \operatorname{Br}\left(Z^0 \to l^+ l^-\right)$
NNPDF1.2	11.99 ± 0.34 nb	$8.47\pm0.21~ m nb$	1.94 ± 0.04 nb
NNPDF2.0	$11.57\pm0.19~\text{nb}$	8.52 ± 0.14 nb	$1.93\pm0.03~ m nb$
CTEQ6.6	$12.41 \pm 0.28 \text{ nb}$	$9.11\pm0.22~ m nb$	$2.07\pm0.05~\text{nb}$
MSTW08	12.03 ± 0.22 nb	$9.09\pm0.17~ m nb$	2.03 ± 0.04 nb

LHC standard Candles

	$\sigma(W^+)$ Br $(W^+ \rightarrow l^+ \nu_l)$	$\sigma(W^-) \operatorname{Br} \left(W^- \to I^+ \nu_I \right)$	$\sigma(Z^0) \operatorname{Br}\left(Z^0 \to l^+ l^-\right)$
NNPDF1.2	11.99 ± 0.34 nb	$8.47\pm0.21~ m nb$	1.94 ± 0.04 nb
NNPDF2.0	$11.57\pm0.19~\text{nb}$	$8.52\pm0.14~ m nb$	$1.93\pm0.03~ m nb$
CTEQ6.6	$12.41 \pm 0.28 \text{ nb}$	$9.11\pm0.22~{ m nb}$	$2.07\pm0.05~\text{nb}$
MSTW08	12.03 ± 0.22 nb	$9.09\pm0.17~\mathrm{nb}$	2.03 ± 0.04 nb

• Impact on NuTeV determination of $\sin^2 \theta_W$

Determinations of the weak mixing angle $\text{sin}^2\theta_W$

Conclusions and Outlook

The way ahead of NNPDF fits ...

- NNPDF2.0 is the first global NNPDF fit
- Competitive errors on PDF and precision studies of observables (see NuTeV anomaly) possible
- No sign of strong tension among different datasets
- Officially released NNPDF sets (NNPDF 1.0/1.2/2.0) are available within the LHAPDF interface.
- Next steps:
 - Improved treatment of Heavy Flavour contributions (FONLL, FFNS), NNPDF 2.x
 - Inclusion of higher order contributions (NNLO QCD and EW effects), NNPDF x.x

• ...

Backup Slides

- Implementation of a new strategy to solve DGLAP evolution equation
- Evolution is performed as interpolation using higher-oder interpolating polynomials (Hermite polyonomials)
- Implementation benchmarked against the Les Houches tables
- Gain in speed by a factor 30 (for a fit to 3000 datapoints)
- Speed of the evolution scales with number of points in the interpolating grid (compare to older implementations which scaled with number of datapoints).

Methodology

Impact of improved trainig/stopping

Methodology

Impact of to-method

Some more phenomenological implications

	$\sigma(t\bar{t})$	$\sigma(H, m_H = 120 \text{GeV})$
NNPDF1.2	$901\pm21~{ m pb}$	36.6 ± 1.2 pb
NNPDF2.0	$913\pm17~ m pb$	37.3 ± 0.4 pb
CTEQ6.6	$844\pm17~{ m pb}$	$36.3\pm0.9~{ m pb}$
MSTW08	$905\pm18~ m pb$	$38.4\pm0.5~{ m pb}$

A. Guffanti (Univ. Freiburg)

20/21

Vector Boson production at colliders

- Z rapidity distribution:
 - Very good description of D0 data ($\chi^2 = 0.57$)
 - Poor description of CDF data ($\chi^2 = 2.02$)
 - MSTW08 has the same pattern
 - Possible inconsistency of the two datasets?
- CDF W-asymmetry
 - We fit the direct W-asymmetry data, not the leptoinc asymmetry
 - Poor description of the data $(\chi^2 = 1.85)$

