Fast Simulation of High Granularity Calorimeters with Deep Generative Models

Peter McKeown Deutsches Elektronen-Synchrotron 16.03.2021

Outline

1 The ILD detector

2 Generative Models

- Conditioning Generative Models
- Generative Adversarial Networks
- **3** Overview of previous work
- 4 Angular conditioning efforts

The ILD Concept

- International Large Detector (ILD) concept for the International Linear Collider (ILC)
 - Higgs Factory
- Optimized for Particle Flow
 - Reconstruct each individual particle in subdetector
 - Obtain optimal detector resolution
- Key features:
 - Precise tracking and vertexing
 - Excellent hermeticity
 - High granularity calorimeters

The ILD Electromagnetic Calorimeter

- Destructively measure particle's energy
 - Produce shower of secondary particles until totally absorbed
- Sampling calorimeter- measure fraction of energy
- ILD proposal: Si-W ECAL
 - 30 layers of alternating active and passive material
 - 20 layers: 2.1 mm thick
 - 10 layers 4.2 mm thick
 - 5x5 mm² silicon cells
 - ~ 80 million channels for barrel
- Geometry is not perfectly regular... → Project onto regular grid

The Strain on HEP Computing Resources

- Ever increasing demand for computing resources
 - MC generation largest fraction
 - Calorimeters most intensive part of detector simulation

WALL CLOCK CONSUMPTION PER WORKFLOW

D. Costanzo, J. Catmore, ATLAS Computing update, LHCC meeting , 2019

Generative Models

- Approach to fast simulation- amplify statistics
- Promising solution: generative models
 - Generate new samples following the distribution of original data
 - Map random noise to data
 - Highly parallelizable
 - Conditioning

See preceding talk by Sascha outlining proof of principle: T 38.8- GANplifying Event Samples arXiv:2008.06545

Getting High: Simulating the ILD ECAL with Deep Learning

- Previous work in our group: ILD ECAL simulation with 3 generative models
 - 30x30x30 regular grid of calorimeter cells
 - 950k photon showers
 - Continuous range of energies: 10-100 GeV
 - Fixed incident point
 - Perpendicular to the calorimeter face

Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed

Erik Buhmann · Sascha Diefenbacher · Engin Eren · Frank Gaede · Gregor Kasieczka · Anatolii Korol · Katja Krüger

arXiv:2005.05334

Getting High: Generative Adversarial Network

* For details on the other architectures see: T21.5 from Erik (Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network, arXiv:2102.12491) and T57.1 from Sascha

Getting High: High Fidelity Simulation

 BIB-AE successfully reproduces MIP peak at 0.2 MeV (postprocessing)

• Mean and width well reproduced

Conditioning requirements for a general simulation

- Conditioning for a general calorimeter simulation:
 - Energy
 - Particle type
 - Incidence point
 - Two angles
 - Polar angle: θ
 - Azimuthal angle: φ

Angular conditioning- Training data

In Progress: condition generative networks on particle's angle of incidence and energy .

25

20

10

5

0

0

5

10

15

z [layers] 15

- Start simple:
 - Fixed energy- 20 GeV •
 - Only vary polar angle in one direction- from 90°-30°
 - Fixed particle type- photons
- Problem: How to make sure the full shower is contained? .
 - Extend the grid in y: shape (30,30,40) (z,x,y)
 - Shift gun position •
- Currently have 132k showers for training ٠

Angular conditioning- GAN network architecture

- Begin with the simplest architecture
- Give $tan(\theta_z)$ and E as separate network parameters
- Multiply both by noise before passing to network
- Generator learning rate 10² larger than discriminator

Angular conditioning- Preliminary results

DESY. | DPG Spring Meeting, Dortmund 21| Peter McKeown | 16.03.2021

Angular conditioning- Ongoing progress

• Compare generated and GEANT4 distributions for a fixed angle of 60 degrees

Angular conditioning- Preliminary results

Angular conditioning- Angular benchmark

- Find principal axis of showers- benchmark for model
- Diagonalize analogue inertia tensor
- Principal axis is eigenvector with the smallest eigenvalue
- In order to reconstruct the true angle:
 - Layers in ILD ECAL are not regularly spaced in z
 - Take this into account in positions of hits used in the inertia tensor

Angular conditioning- Angular benchmark

- Find principal axis of showers- benchmark for model
- Diagonalize analogue inertia tensor
- Principal axis is eigenvector with the smallest eigenvalue
- In order to reconstruct the true angle:
 - Layers in ILD ECAL are not regularly spaced in z
 - Take this into account in positions of hits used in the inertia tensor

Conclusion

• Demonstrated angular and energy conditioning in a GAN architecture

Next Steps

- Train on more data
- Quantitative metric for epoch selection
- Study trade off in physics distributions when angular conditioning is introduced
- More sophisticated architectures e.g. BIB-AE
- Vary energy and study effect on performance

Getting high: Generative models- Wasserstein GAN

Getting high: Generative models- BIB-AE

Getting high- other physics distributions

Getting high- other physics distributions

Angular conditioning- Preliminary results

Angular conditioning- Preliminary results

Angular conditioning- other physics distributions (preliminary)

Angular conditioning- Checking full shower is contained

Angular conditioning- GAN network architecture: more details

- Generator:
 - Noise vector of length 100, uniformly between -1 and 1
 - 4 transposed 3D convolutional layers
 - ReLU activation functions
 - Learning rate: 1x10⁻³
- Discriminator:
 - Five 3D convolutional layers- batch normalization except final layer
 - Two fully connected layers for readout
 - LeakyReLU; sigmoind in the final layer
 - Learning rate: 1x10⁻⁵
- Trained for 50 epochs
- Use Adam optimizer with a learning rate of 2x10⁻⁵