

Interaction point simulations: Output format

Tom Blackburn Department of Physics, University of Gothenburg

23 Feb 2021 Simulation and Analysis Task Force

Interaction point simulations Output format

- Present status:
 - IPstrong ".out": plain-text, metadata header + columns of particle properties
 - Event information in a separate file in stdhep/HEPmc format.

#													
	# First interacting species: electron Second interacting species: laser # First initial particle energy = 16.5000 +/16 GeV, Sigma_xyz = 5.00 5.00 24.00 microns, Emit_xy = 1.401.40 mm mrad # Laser Intensity = 2.55 x 10^18 W/cm^2, Wavelength = 800.00 nm, pulse length = 25.00 fs, spot size = 1256.64 micron^2												
			eak chi =.1375, Mi			, spor size = 1250.04 mi							
				5									
# #	E (GeV)	x (um)	y (um)	z(um)	beta_x	beta_y	beta_z	PDG_NUM	MP_Wgt	MP			
	16.496183	-5.3290756	-2.3010402	100.85535	0.2602675254308950E-05	-0.5944696053919820E-05	0.999999999949916235071	11	750000.	1			
	16.510355	4.1228638	1.4070765	67.531998	0.1743879115798838E-05	0.1220677456487837E-04	0.99999999944501909166	11	750000.	2			
	16.515006	7.1969290	-2.5056124	12.002699	0.1037741131022853E-05	0.1246274409033604E-04	0.99999999944311360433	11	750000.				
	15.633417	-1.4690765	-5.0552488	69.123344	0.9653832384162547E-05	0.2120576224343157E-05	0.99999999941695546851	11	750000.	4			
	16.491223	-2.0644660	3.0609196	102.14609	0.3606096816450605E-05	-0.3520621637173127E-05	0.99999999950723099759	11	750000.	!			
	16.502842	11.296187	-0.65213668	59.888678	0.7112123243721278E-05	-0.1147111657874488E-04	0.99999999942952174883	11	750000.	(
	16.493390	8.5975999	1.6663475	42.337080	0.3714799915420995E-05	-0.3234152734504097E-06	0.99999999951310435348	11	750000.				
	16.493896	2.6756580	-2.4684185	44.241572	0.4350125248144688E-06	-0.2066262416805113E-05	0.99999999951785660302	11	750000.				
	14.947983	-6.2654336	-5.4633779	33.392538	-0.4712590953603720E-06	-0.4425118503112067E-06	0.99999999941547914771	11	750000.				
	16.504829	-4.9861585	-2.7277981	86.387792	0.1453250219267275E-04	-0.1710384153669591E-04	0.99999999926885404367	11	750000.	1			
	16.495772	-2.6027415	0.16137765	43.910537	0.1628948169464526E-04	0.2473660058680029E-04	0.99999999908157182312	11	750000.	1			
	16.505128	3.0853489	-3.3995191	32.793661	0.11953496217907 <u>57E-04</u>	0.6719874506058525E-05	0.99999999942671755017	11	750000.	1			
	13.455472	0.81972461	2.5497898	53.966603	0.1801050516811686E-05	0.6381423032405565E-05	0.99999999925688927633	11	750000.	1			
	16.496408	-4.6651470	-1.6045006	26.002043	0.4983738370420851E-05	-0.8658561263677554E-05	0.99999999947032792405	11	750000.	1			
	16.492309	-4.7901101	2.4687461	65.535619	0.2198781253331845E-04	-0.5925053622456324E-05	0.99999999926070849823	11	750000.	1			
	16.499131	3.4297124	9.7689837	85.144129	0.10882202149636 <u>27E-04</u>	0.8411757271211285E-06	0.99999999946082550204	11	750000.	10			
	16.487409	0.40003768	0.46133209	87.411781	0.2656076966815602E-05	-0.4100623794214353E-05	0.99999999950777332831	11	750000.	17			
	16.507074	1.1067653	4.0147561	93.411639	0.74591148540592 <u>20E-05</u>	-0.1130996500365574E-04	0.99999999942907506355	11	750000.	18			
	16.517828	5.5873724	1.6667491	25.979863	0.4610362954265061E-05	-0.4191946859220493E-05	0.99999999950206165460	11	750000.	19			
	16.503257	2,6265917	3.0300659	39.361477	0-5322922030232208F-05	A A5650500050 47405 A5		11	750000.	26			

Interaction point simulations Output format

- Things to consider in a replacement
 - Binary saves space, easier to store at higher precision, faster to read/write
 - Reproducibility means knowing exactly how data was generated, which means storing lots more metadata
 - Ideal format would be platform/language independent, straightforward to pickup
 - How easy is it to pipe data into the next code in the sequence?

Interaction point simulations Output format

- Things to consider in a replacement
 - Binary saves space, easier to store at higher precision, faster to read/write
 - Reproducibility means knowing exactly how data was generated, which means storing lots more metadata
 - Ideal format would be platform/language independent, straightforward to pickup
 - How easy is it to pipe data into the next code in the sequence?
- HDF5 as the "minimal viable" option
 - Time taken to finalize this is time that could be spent on implementing physics processes
 - Accessible by most software packages, e.g. Matlab, and libraries available for, e.g. python, C/C++
 - Hierarchical data format (filesystem within a file), with "groups" (folders) and "datasets" (files/tables)
 - Data "attributes" allow for storage of, e.g. units and definitions, together with the data itself
 - Additional milestone: transfer of output format from plain-text to custom HDF5 [March 2020].
- Proposed structure:
 - At top level: /build, /config, /final-state and /event

Interaction point simulations Proposed HDF5 structure

- /build
 - Anything needed to rebuild the executable: code version, commit hash, compilation options...
- /config
 - Anything need to reconstruct the run: a copy of the input file, values of laser intensity, electron energy...
- /final-state
 - /electron, /photon, /positron
 - Each containing a dataset (i.e. a table) of position and momentum, both four-vectors
- /event
 - Format not decided should store enough information on individual events to reconstruct the interaction, e.g. vertex position, incoming and outgoing momenta etc – subdivided by type?
 - Standard formats, e.g. HEPmc3, are all plain-text?
 - Any thoughts welcome

Interaction point simulations Python example

plt

3]	⊳	•≣	Ml					
		import import		h5py matplotlib.pyplot			a	
				numpy				

```
[4] ▷ ▶ ₩ м4
```

file = h5py.File('0.5x1d_particles.h5', 'r')

```
[3] ▶ +₩ Mi
```

list(file.keys())

```
['build', 'config', 'final-state']
```

```
[6] ▷ ▶∰ ₩↓
```

```
list(file['build'].keys())
```

```
['branch', 'commit-hash', 'features', 'version']
```

```
[11] ▷ ▶≣ ⋈↓
```

print(file['build/branch'].value)
print(file['build/version'].value)

```
feature/hdf5-output
0.5.2
```

```
[7] ▷ ▶≣ ⋈
```

```
list(file['config'].keys())
```

['beam', 'control', 'input-file', 'laser', 'mpi-tasks', 'output']

```
[12] ▷ ▶ ∰ ₩4
```

file['config/laser/a0'].value

```
0.5
```

```
[13] ▷ ▶≣ ⋈∔
```

test=file['config/laser/polarization']
print(test.dtype.metadata)
print(test.value)

{'enum': {'Linear': 0, 'Circular': 1}}
1

Interaction point simulations Python example

/] ⊳ ⊧≣ м∔

plt.hist(energies, density=True, bins=100)
plt.ylabel('density')
plt.xlabel('energy (MeV)')
plt.show()

