LGAD sensors & plans for a beam telescope timing layer

A. Vauth

March 10, 2021 DESY SiDet R&D meeting

The need for new timing detectors

Experimental environments are evolving

 \rightarrow Include track timing to address new challenging conditions

Time information complements spatial information:

- Timing layer: timing in event reconstruction
- "4D" tracking: timing at each point along the track

Example goals/requirements: HL-LHC 50 ps, HADES 60 ps, FCC-hh 10 ps

Example

The need for new timing detectors

Experimental environments are evolving

 \rightarrow Include track timing to address new challenging conditions

Time information complements spatial information:

- Timing layer: timing in event reconstruction
- "4D" tracking: timing at each point along the track

Example goals/requirements: HL-LHC 50 ps, HADES 60 ps, FCC-hh 10 ps

Example with timing info

The need for new timing detectors

Experimental environments are evolving

 \rightarrow Include track timing to address new challenging conditions

Time information complements spatial information:

- Timing layer: timing in event reconstruction
- "4D" tracking: timing at each point along the track

Example goals/requirements: HL-LHC 50 ps, HADES 60 ps, FCC-hh 10 ps

Example with timing info

HEP detector R&D: dedicated beam tests for conceptual / technical design, calibrations, commissioning, ... \rightarrow DESY II Testbeam Faciliy

Integral part of test beam infrastructure: Beam Telescopes

- \rightarrow EUDET-type telescopes: 6 layers of MIMOSA26 pixel sensors
 - Monolithic Active Pixel Sensor
 - 1152 × 576 pixels, pitch: 18.4 μm
 - Measured intrinsic sensor resolution: $\sigma \cong 3 \, \mu m$
 - Rolling shutter readout, readout cycle 115 μs

HEP detector R&D: dedicated beam tests for conceptual / technical design, calibrations, commissioning, ... \rightarrow DESY II Testbeam Faciliy

Integral part of test beam infrastructure: Beam Telescopes

- \rightarrow EUDET-type telescopes: 6 layers of MIMOSA26 pixel sensors
 - Monolithic Active Pixel Sensor
 - 1152 × 576 pixels, pitch: 18.4 μm
 - Measured intrinsic sensor resolution: $\sigma \cong 3 \, \mu m$
 - Rolling shutter readout, readout cycle 115 μs

"No" time resolution \rightarrow upgrade needed to meet requirements of future detector test campaigns

Upgrade Plans

Add faster device for time stamping the tracks \rightarrow timing layer

- Short term: existing sensor as intermediate solution
 Timepix3
 - Already existing and functional
 - Timestamps $\mathcal{O}(1 \text{ ns})$
- Long term: develop next-generation timing layer
 - ► LGAD → this talk
 - Allow for picosecond-timing
 - Requires R&D
 - Dedicated ROC? Start with Timepix3 for first prototypes

[CERN-PHOTO-201702-048-4]

[doi.org/10.1140/epja/s10050-020-00186-w]

Low Gain Avalanche Diodes

Ultra Fast Silicon Detectors optimised for timing measurements:

- Thin multiplication layer
- \rightarrow High field
- \rightarrow Increase signal by factor ${\sim}10$

LGADs are routinely produced in various sizes and pad numbers (e.g. by CNM, FBK, HPK)

$\mathcal{O}(30\,\text{ps})$ time resolution possible

- Each step in the read-out process
- Anything that changes the shape of the signal

$$\sigma_t^2 = \sigma_{\text{TimeWalk}}^2 + \sigma_{\text{LandauNoise}}^2 + \sigma_{\text{Distortion}}^2 + \sigma_{\text{Jitter}}^2 + \sigma_{\text{TDC}}^2$$
arXiv:1704.08666

- Each step in the read-out process
- Anything that changes the shape of the signal

$$\sigma_t^2 = \sigma_{\text{TimeWalk}}^2 + \sigma_{\text{LandauNoise}}^2 + \sigma_{\text{Distortion}}^2 + \sigma_{\text{Jitter}}^2 + \sigma_{\text{TDC}}^2$$

Variation in time of arrival due to different signal amplitudes

Compensation: Constant Fraction Triggering or amplitude-based correction (TOT)

Time walk effect OE 56(3), 031224 (2017)

TUniversität Hamburg
R FORSCHUNG | DER LEHRE | DER BLIDUNG A. Vauth | SiDet meeting, 10.3.2021 | LGADs for Beam telescope timing

- Each step in the read-out process
- Anything that changes the shape of the signal

$$\sigma_t^2 = \sigma_{\text{TimeWalk}}^2 + \sigma_{\text{LandauNoise}}^2 + \sigma_{\text{Distortion}}^2 + \sigma_{\text{Jitter}}^2 + \sigma_{\text{TDC}}^2$$

Caused by inhomogenities in drift velocity & weighting field

Compensation: saturated drift velocity & optimised geometry ("parallel plate") Time-to-digital converter contribution $\Delta T / \sqrt{12}$ (bin width)

in most cases small contribution

- Each step in the read-out process
- Anything that changes the shape of the signal

$$\sigma_t^2 = \sigma_{\text{TimeWalk}}^2 + \sigma_{\text{LandauNoise}}^2 + \sigma_{\text{Distortion}}^2 + \sigma_{\text{Jitter}}^2 + \sigma_{\text{TDC}}^2$$

Energy deposit Current fluctuations due to signal shape variations for MIP ionization

Time-Of-Arrival variations due to noise

- sensor noise
- electronics noise
- slew rates (dV/dt)

arXiv:1704.08666

= the main contributors \rightarrow low gain, thin detectors (see next slides)

Universität Hamburg DER FORSCHUNG | DER LINKE | DER BLOUMG A. Vauth | SiDet meeting, 10.3.2021 | LGADs for Beam telescope timing

Why Low Gain?

High gain has many drawbacks: risk of breakdown, power consumption, higher noise

```
"Excess Noise Factor" (F): additional noise induced by the multiplication mechanism (gain not constant \rightarrow additional fluctuations in current)
F \sim G^{x}
```

signal after multiplication: multiplied by G current noise increases with \sqrt{F}

 \rightarrow S/N ratio deteriorates at higher gain

For a given ENF, there is an optimum gain (10 \sim 30)

Why thin sensors?

Current fluctuations are due to statistics of MIP ionization

> For a fixed gain: amplitude of the signal independent of thickness d:

 $I_{max} \sim n_{eh-initial} \, G \, q \, v_{sat}$

arXiv:1704.08666

Der rosschutwig i pers link per ber blow A. Vauth | SiDet meeting, 10.3.2021 | LGADs for Beam telescope timing

Irradiation causes three main effects:

- Decreased charge collection efficiency
- Increased leakage current
- Change of doping profile

IШ

Deactivation of p-doping by Boron removal \rightarrow Gain reduction due to irradiation

Lots of R&D ongoing, different doping profiles and ion implants:

Defect Engineering of the gain implant

- Carbon co-implantation in gain layer volume
- Boron as gain layer implant

Modification of gain layer profile

 Narrower doping layer with higher initial doping

IШ

DER FORSCHUNG | DER LEHRE | DER BILDUNG A. Vauth | SiDet meeting, 10.3.2021 | LGADs for Beam telescope timing

Ultra-fast silicon detectors - performance

Example: UFSD from Hamamatsu

- LGAD with 50 µm thickness
- > Value of gain ~20
- > 30 ps time resolution

Example: Irradiation study for HGTD

- ► LGAD with 45 55 µm thickness
- Different vendors/implantations
- > \sim 40 ps time resolution after irradiation

R&D Challenge: Fill Factor

Segmentation to improve spatial resolution

- Inter-pixel region: isolation and termination structures (p-stop, Junction Termination Extension, virtual GR)
- Carriers generated in this area not multiplied
- Interpad regions with no gain $\mathcal{O}(\approx 30 \, \mu m \text{ to } 70 \, \mu m)$
- \rightarrow R&D challenge:

Segmentation with improved fill factor

Several technology options:

Trench-isolated LGAD

Inverse LGAD

Resistive AC-Coupled LGAD

(see talk N. Cartiglia at last week's instrumentation seminar)

Der FORSCHUNC | DER LEHRE | DER BILDUNG A. Vauth | SiDet meeting, 10.3.2021 | LGADs for Beam telescope timing

Standard segmentation

[[]G. Paternoster, 35th RD50 workshop, Nov 2019]

TI-LGAD

Trench isolation:

- JTE and p-stop replaced by trench to isolate the pixels
- Filled with Silicon Oxide
- Typical trench width < 1 µm much smaller wrt. JTE and p-stop
 - \rightarrow smaller no-gain region

1 Trench Layout (trench grid)

2 Trenches Layout

[G. Paternoster , 35th RD50 workshop, Nov 2019] Universität Hamburg A. Vauth | SiDet meeting, 10.3.2021 | LGADs for Beam telescope timing

TI-LGAD

Trench isolation:

- JTE and p-stop replaced by trench to isolate the pixels
- Filled with Silicon Oxide
- Typical trench width < 1 μm much smaller wrt. JTE and p-stop
 - \rightarrow smaller no-gain region

Layout	Nominal no-gain	Effective gain-loss
1 Trench	~ 4 um	~6 um
2 Trenches	~ 6 um	~3 um

[G. Paternoster , 35th RD50 workshop, Nov 2019]

Trade-off between minimizing gain-loss region and reducing E-field at the border

Comparison of FBK productions: UFSD3 vs Trench-Isolated

iLGAD

IШ

Inverse LGADs:

- No segmentation of the multiplication layer
- Hole collection
- Complex double side process (first generation)

LGAD TECHNOLOGY

Jniversität Hamburg per present on years that namburg A. Vauth | SiDet meeting, 10.3.2021 | LGADs for Beam telescope timing [D. Flores, SIMDET '16, Sep 2016]

iLGAD

IШ

Jniversität Hamburg

Inverse LGADs:

- No segmentation of the multiplication layer
- Hole collection
- Trenches to isolate the active area (third generation)
- Single-side process

[D. Flores, SIMDET '16, Sep 2016]

iLGAD for Timing

To use iLGADs for timing applications \rightarrow Reduce the thickness of the detector CNM: fabrication with two different approache

- 1. Epitaxial wafer + epitaxial multiplication
- 2. Si-Si wafers + implanted multiplication

> Trench-isolated LGADs: part of RD50 run @ FBK Pixel pitch: $55 \,\mu m \times 55 \,\mu m$, number of pixels 55×55 Production to finish end of this month

Inverse LGADs: part of RD50 run @ CNM
 Pixel pitch: 55x55 µm², number of pixels 256x256
 Mask design/fabrication ongoing,
 Production to be finished in September

Other ingredients for improved timing? Trigger Logic Unit, DAQ software \rightarrow AIDA-2020 TLU, EUDAQ 2

Summary & Outlook

- Low Gain Avalanche Diodes to measure both time and space - with improved signal-to-noise ratio
- For timing: 30-50 μm thickness, gain (*O*)(10)
- R&D ongoing on
 - radiation hardness (doping profile, ion implantats)
 - segmentation (Trench / Resistive AC / i-LGAD)
 - and more (uniformity, electronics, ...)
- More and more R&D on fast timing detectors → growing need for timing layer to test them

\rightarrow LGAD layer for beam telescopes for the next decade of successful testbeam operation

Backup Slides

iLGAD Third Generation (iLG3): Fabrication Process

We are planning to carry out this fabrication with two different approaches:

- Epitaxial wafer + epitaxial multiplication 1.
- 2. Si-Si wafers + implanted multiplication

(2)(1)Dose/energy multiplication layer is adapted to the Si-Si 4" high resistivity >10kOhm · cm p-type multiplication laver thermal process p-doped 285 µm wafer implantation CNM (3) (4) Wafer reduction to 50 µm After (4), the profile is the same as standard I GAD runs. This is the Foundry starting point for the fabrication. Low resistivity n-doped wafer Low resistivity n-doped wafer Thermal process Si-Si

CS

10

Example of signal sharing

