Scintillation Screen IP Background Analysis

John Hallford

University College London

02/03/2021

Analysis of ~0.1 BX of e-LASER background G4 simulation with QGSP_BERT_HP physics list. All Integrals scaled to per 1 Bunch Crossing.

The following table is all recorded particles which intercept the screen, regardless of if they deposit energy / induce signal.

*If we take exotic to mean anything other than e^{-} , e^{+} , γ ...

PDG ID	Integral/BX	Particle	Note
-211	307	π-	~1.15 signal compared to e ⁻ (1 GeV)
-14	3654	$\overline{\nu}_{\mu}$	Neutrino, no effect
-13	24	μ+	Signal similar to e- at 1 GeV
-12	5.73x10 ⁵	$\overline{\nu}_{e}$	Neutrino, no effect
-11	10631	e+	Signal similar to e- at 1 GeV
11	1.386x10 ⁷	e-	
12	4.79x10 ⁵	ν _e	Neutrino, no effect
13	24	μ	Signal similar to e- at 1 GeV
14	3544	$ u_{\mu}$	Neutrino, no effect
22	8.077x10 ⁶	γ	~1/30 signal compared to ^{e-} at 1 GeV
211	159	π+	~1.15 signal compared to e ⁻ (1 GeV)
2112	5.541x10 ⁶	n	~1/6 signal compared to e ⁻ (1 GeV)
2212	441	р	~1.18 signal compared to e ⁻ (1 GeV)

PDG ID	Integral/BX	Particle	Note
100001002	61.3	H nucleus	
100002004	61.3	He Nucleus	
100008016	12.26	O Nucleus	Low energy (5.77 keV)

5

6

Neutrons Intercepting the Screen

Protons Intercepting the Screen

A beam-line-centred distribution (mean x close to far right). XY position is again relative to centre of screen.

Pions Intercepting the Screen

Similar to protons. Small number, centred on e⁻ beamline.

<u>All Particles in Geant4 Background Simulation</u> Excluding e⁺, e⁻, y

Neutrons and neutrinos dominate number of particles. But this does not correspond to energy deposition.

EM Particle Energy Deposition in Geant4 Background Simulation Only e⁺, e⁻, y

y pixel

From a previous bkg (E=16.5 GeV) simulation <u>not</u> including 'exotic' particles. Deposition in energy of IP Scintillation Screen [Z dimension in GeV]

11

•Exotic' Particle Energy Deposition in Geant4 Background Simulation Including e⁺, e⁻, γ

y pixel

x pixel

Back to QGSP_BERT. Deposition in energy of IP Scintillation Screen [Z dimension in GeV]. Including these particles means a modest shift in the integral of energy deposited in the entire screen [GeV] from 2667 \rightarrow 2882.

Our idea of the shape of the bkg (flat component + radially symmetric component centred around e-beamline) is unchanged. Suitable for measurements and subtraction. 12

Energy Deposition in Geant4 Signal Simulation Only e⁺, e⁻, γ

IP Scintillation Screen [Z dimension in GeV]

The S/B in the region of interest is then \sim 400/1.4 or a few hundred. Negligible difference after the inclusion of QGSP_BERT physics.

 $W_0 = 50 \ \mu m$, phase-0 LASER

Energy Deposition in Signal Simulation Only e⁺, e⁻, γ

IP Scintillation Screen [Z dimension in GeV]

Here the general S/B in the highest flux region is a few thousand.

 $W_0 = 8 \mu m$, phase-I LASER

Backup

22

QED Particles in Geant4 Signal Simulation

