Supervised Learning-based optics corrections in circular accelerators

Elena Fol

R. Tomás, G. Franchetti

Optics Measurements and Corrections Team, BE-ABP, CERN

Johann-Wolfgang Goethe University

Intelligent Process Control Seminar 20.04.2021

Outline

Introduction

Estimation of magnetic errors from optics measurements

- General concept
- Results on simulations
- Results on experimental data

Denoising and reconstruction of optics functions

- Autoencoder
- Linear models
- Results

Conclusions

I. Introduction

Applying Machine Learning to Beam Optics

PhD project: Application of Machine Learning to Accelerator Optimization with the focus on beam optics.

- Why and how is the beam optics controlled in the LHC?
- Where are the limitations of traditional techniques?
- Which ML concepts and algorithms can be applied?
- Achieved results?

Applying Machine Learning to Beam Optics

PhD project: Application of Machine Learning to Accelerator Optimization with the focus on beam optics.

- Why and how is the beam optics controlled in the LHC?
- Where are the limitations of traditional techniques?
- Which ML concepts and algorithms can be applied?
- Achieved results?

Beam optics control:

- > Magnetic errors and misalignments change **beam size** optics
- Adjust magnetic strengths optics corrections
- > Reliable and precise **measurements of optics functions** are needed to compute corrections.

Importance of beam optics control:

- Collision rate depends on the beam size
- > Beam optics imperfections can lead to machine safety issues.

Relative beam sizes around IP1 (Atlas) in collision

Limitations of traditional techniques for optics corrections?

- Optics corrections algorithms aim to compensate the measured optics deviations from design
 - \rightarrow What are the actual currently present **magnetic errors**?
- Advanced techniques for computation of optics functions require additional measurements and operational time
 → How to obtain advanced analysis from available measurements?
- Noise in the measured optics functions

 \rightarrow How to **reduce the noise** without removing valuable information?

- Missing data points due to the presence of faulty BPMs
 - → How to **reconstruct** the missing data?

I. Estimation of magnetic errors

Optics corrections at the LHC

 Corrections aim to minimize the difference between the measured and design optics by changing the strength of corrector magnets – single quadrupoles and quadrupoles powered in circuits.

Interaction

Relative beam sizes around IP1 (Atlas) in collision

Optics corrections in the LHC are currently based on: – Local corrections around Interaction Points (e. g. Segment-by-Segment method)

- **Global** corrections using a *Response Matrix* between available correctors and optics observables.

Beem 2

– For each beam **separately.**

Optics corrections at the LHC

 Corrections aim to minimize the difference between the measured and design optics by changing the strength of corrector magnets – single quadrupoles and quadrupoles powered in circuits.

> What is the actual error of each individual magnet?

Optics corrections in the LHC are currently based on: - Local corrections around Interaction Points (e. g. Segment-by-Segment method)

- **Global** corrections using a *Response Matrix* between available correctors and optics observables.

- Appropriate weights of observables in the response matrix are adjusted manually.
- For each beam **separately.**
 - How to determine the whole set of errors for both beams simultaneously?

Supervised Learning & multivariate regression

General concept

> Train supervised regression model to predict magnet errors from optics perturbations caused by these errors.

 Corrections are implemented by changing the strength of circuits – magnets powered in series

- Optics perturbations are caused by single magnets all around the ring
- Training data has to consist of pairs:
 "input <u>correlated to –</u> known target values"
- Predict single quadrupole errors directly correlated with the optics perturbations.
- Correlations between magnetic errors and optics deviations from design can be learned by ML-model.
 Large dataset is needed in order to train a regression model: simulations!

Simplified studies: optics deviations caused by circuits errors

- Training data: perturb the optics by changing the strength in the circuits (quadrupoles powered in series)
- Validation: simulations perturbed with errors in individual quadrupoles

Different algorithms are compared:

Orthogonal Matching Pursuit, Random Forest, Convolutional Neural Network:

- Similar results
- Linear Regression as baseline model:
 - easier to interpret,
 - faster to train,
 - mostly linear effects are present in simulations.
- Increasing the complexity of simulations step by step by adding additional error sources, exploring limitations of regression models.

→ Correction results using Convolutional Neural Network are similar to Response Matrix.

Linear Regression model as predictor

Linear model for *input X, output Y - pairs, i* – number of pairs (training samples), with *weights w:* $f(X, w) = w^T X$

Residual sum of squares as **loss function** for model optimization:

$$L(w) = \sum_{i} (Y_{i} - f(X_{i}; w))^{2}$$

Find **new weights** minimizing the Loss function:

 $w^* = \arg \min_w L(w)$

Update weights for each incoming input/output pair

- Generalized model explaining relationship between input and output variables in all training samples.
- Test the model on unseen validation data.
- \rightarrow How to improve the predictive power of the model?

Weights update regularization & bagging

Too much "flexibility" in weights update can lead to *overfitting*

 \rightarrow **Regularization** places constraints on the model parameters

- Trading some bias to reduce model variance
- Using L2-norm: $\Omega(w) = \sum_{i} w_{i}^{2}$, adding the constraint $\alpha \Omega(w)$ to the weights update rule: Ridge Regression
- The larger the value of α , the stronger the shrinkage and thus the coefficients become more robust.
- → **Bagging**: Bootstrap Aggregating: reduce variance of the model, without increasing systematic error of prediction:
- Ensemble of slightly different models
- Train a separate model on a subset of training data
- Average output of each predictor for the final output.

Data generation for LHC and model training

- Optics for $\beta^*=40$ cm, collision mode, 6.5 GeV \rightarrow to test the model on available measurements of uncorrected machine (LHC commissioning in 2016)
- 1256 target variables
 - assigned gradient errors in the **all** quadrupoles, **both** beams.
- 3304 input variables: simulated deviations from the design optics in betatron phase advance, normalized dispersion at all BPMs and β at BPMs next to Interaction Points.
- Adding realistic noise estimated from the measurements.

Realistic training data to make adequate prediction from measurements.

Selected model:

- Scikit-Learn implementation of Ridge Regression (regularization parameter α=0.001)
- Bagging-estimator (combining 10 Ridge Regression models)
- 80000 training samples (divided into training and test sets)

Data generation for training and test on simulations

15

How to evaluate trained models?

• "ML point of view": compare predicted magnet errors with corresponding true values.

Figures of merit: $MAE(y, \hat{y}) = \sum_{i=1}^{n} |y_i - \hat{y}_i|$ $R^2(y, \hat{y}) = 1 - \frac{Var\{y - \hat{y}\}}{Var\{y\}}$

• In terms of optics:

ML-model input: **optics** perturbed with magnet errors to be predicted

ML- model output: magnet errors estimated from optics perturbations

- Quadrupole magnets close to the IPs produce the largest optics perturbations.
- **Triplet**: assembly of quadrupole magnets used for a reduction of β-function at the IPs.

→ Important to verify if ML-model can produce reliable reconstruction of these errors.

ML-model is trained to **predict all quadrupoles** in the machine.

→ Evaluating triplets and arcs magnet errors prediction separately

How well can be reconstructed?

Results on simulations: errors of prediction

Comparison between true simulated and predicted errors:

Reconstructing optics with predicted magnet errors

→ Very good agreement between the optics simulated with true magnetic errors and simulations generated with the errors predicted by the model.

> Predicted magnet errors agree with the errors that introduced the original beta-beating
> → beta-beating can be corrected.

Results on experimental data: 2016 LHC commissioning

"Ground-truth" of magnet errors is unknown unlike simulations.

- 1. Use predicted magnet errors to simulate optics perturbation
- 2. Compare produced simulation to actual measurement
- \rightarrow Residual error of measured optics reconstruction (\approx potential correction)

Results on experimental data: 2016 LHC commissioning

"Ground-truth" of magnet errors is unknown unlike simulations.

- 1. Use predicted magnet errors to simulate optics perturbation
- 2. Compare produced simulation to actual measurement

 \rightarrow Residual error of measured optics reconstruction (\approx potential correction)

HL-LHC studies

High Luminosity Large Hadron Collider: Upgrade of the LHC to push the performance in terms of beam size and luminosity.

- The local linear optics correction at the IR will be essential to ensure the HL performance.
- Current LHC strategies might impose limitations
- \rightarrow new correction strategies are needed.

Full set of quadrupoles all around the ring

Inner Triplet magnets in IRs

Courtesy of Hector Garcia Morales Q2AL Q2BL Q2AR Q2BR 2030 10 True magnet errors $[10^{-4}]$

HL-LHC studies

Quadrupole error prediction: Predicting the systematic error

One of the major concerns with the errors in the triplet magnets:

- systematic part of the gradient error (unknown) may have a significant impact on the β-beating.
- The systematic error can be estimated by averaging the error of the different triplet magnets:

Courtesy of Hector Garcia Morales 10.0 Systematic Error [10⁻⁴] 7.5 5.0 2.5 0.0 -2.5 -5.0 Predicted -7.5 True -10.0500 1000 1500 2000 2500 Seed number

 $S\approx \langle \Delta K/K\rangle$

Samples for training/test: 32000 [0.80/0.20]

Model: Ridge. Regularization parameter: $\alpha = 10^{-4}$

Model Scores

► R2 = 0.89/0.86

• MAE =
$$3.3/3.8 [10^{-6}]$$

III. Denoising and reconstruction of optics functions

Effect of the noise

- Prediction of magnetic errors in the arcs sections suffers from the presence of noise
- Simulations in the absence of noise -> very high ML-model scores
- Increasing prediction quality possible with more precise measurements of optics functions used as regression model input.

Experimental data: possible issues

- Training models on **simulations** data: **full set of input features** is always available
- Issues with using measurements as input to make new predictions:
 - General: faulty BPMs -> missing values at the location of cleaned BPMs
 - Normalized dispersion and β at BPMs next to IPs: special measurements techniques are needed
 - \rightarrow Features are not always available e.g. depending on the measurement procedure.
- Noise in the input data affects the prediction of the regression models significantly.

How to deal with missing and noisy data?

Experimental data: possible issues

- Training models on simulations data: full set of input features is always available
- Issues with using measurements as input to make new predictions:
 - General: faulty BPMs -> missing values at the location of cleaned BPMs
 - Normalized dispersion and β at BPMs next to IPs: special measurements techniques are needed
 - \rightarrow Features are not always available e.g. depending on the measurement procedure.
- Noise in the input data affects the prediction of the regression models significantly.

Encoder: **compressing** the input data to lower dimensions Decoder: **reconstructing** the data into original input.

Denoising Autoencoder

 A special neural network designed to reproduce given input as output of the network

Applications:

- Denoising of data
- Dimensionality reduction
- Generative modeling
- Supervised and unsupervised learning

Reconstruction and denoising of phase advance deviations

- > Input: simulated phase advance deviations given noise and replacing 10% of values with 0 (faulty BPMs)
- > Output: original simulated phase advance deviations
- Autoencoder with 4 hidden layers, 10000 samples

Reconstruction of missing values in a validation sample

- Missing BPMs: possibility to obtain reliable estimation of the phase advance deviations at the location of faulty BPMs.
- Full set of phase advance deviations: reconstruction error is by factor 2 smaller than simulated realistic noise.

Reconstruction of phase advance: experimental data

Prediction of phase advance deviation from the model agrees well with the measured values at all available BPMs

→ Reliable reconstruction of the values at the location of cleaned BPMs signal.

Reconstruction of β - function

- β-function at IPs and at the location of the triplet quadrupoles is computed by performing k-modulation technique
- β -function around IPs provides important information for the estimation of triplet errors, but data is not always available (e. g. due to the measurements procedure in the past)

Simulation: summary of 1000 seeds

- **Input**: simulated phase advance deviations given noise (beam 1 and 2, horizontal and vertical planes)
- **Output**: $\Delta\beta$ errors at 2 BPMs left and right from IPs 1, 2, 5 and 8 (32 variables in total)
- Ridge Regression, 10 000 training samples

 $\geq \text{Reconstruction error: } \frac{\beta_{simulated} - \beta_{reconstructed}}{\beta_{simulated}} = 1\%$

Reconstruction of normalized dispersion

- Input: simulated phase advance deviations given noise
- **Output**: normalized dispersion $\Delta D_x / \sqrt{\beta_x}$
- Using **linear regression model**: Ridge Regression, 10 000 samples

Conclusion and outlook

Optics corrections based on Supervised Regression models:

- Optics corrections today are done in two steps (local and global).
- ML-models allow to predict all quadrupole errors for both beams simultaneously, local and global errors in one step
- Promising results on simulations and experimental data, especially for optics corrections in Interaction Regions (2 - 6% systematic error)
- ✓ Tested on different optics settings ("ballistic" optics, triplets switched off)

Current limitations:

- Only linear error sources in training simulations
- Prediction of arc magnet errors highly depends on the noise in the measured optics observables.

Residual error for a group of triplet quadrupoles

Conclusion and outlook

Denoising and reconstruction of missing data:

- Successfully demonstrated on simulations the possibility to reduce noise in phase advance measurements using autoencoder.
- ✓ Reconstruction of missing features for the magnet errors prediction
 → tested on measurements data.
- ✓ Providing estimates of optics functions, when time costly measurements techniques cannot be performed.

Outlook:

- **Correctors settings (circuits strengths)** from predicted individual errors
- Integration into operational LHC software infrastructure.

Thank you very much for your attention!

