

RESEARCH FOR GRAND CHALLENGES

Accelerator Research and Development

Andreas Jankowiak, HZB / Jens Osterhoff, DESY on behalf of the ARD team

June 16th, 2021 7th Annual MT Meeting *Part Two* Online

THE MENU

- Common ARD Milestones Status of Plans
 "Energy Responsibility (Efficiency)" (ARD-00) and "Impact of Machine Learning" (ARD-01)
- Innovation Pool projects ACCLAIM and InnovEEA
- Highlights of ST1, ST2, ST3 and ST4
- ErUM (Exploration of the Universe and Matter) Calls 2021
 - ErUM-Data Call01 "Software & Algorithms incl. Al & ML"
 - ErUM "Research of matter with large-scale facilities (photons, neutrons, ions)"

COMMON ARD MILESTONES

Mst	Year	Milestone + Partners	ST	Centers
ARD.00	2027	Energy Responsible (Efficient) Accelerators	common	All
ARD.01	2023	Review the usage and impact of Machine Learning on the ARD research program.	common	All
ARD.02	2024	Update evaluation of the user needs for guidance of the research program activities to be started in 2022	common	All

ARD.00 – ENERGY-RESPONSIBLE ACCELERATORS

Coordination ARD.00: A.-S. Müller

- Prerequisite for future mid- and large-scale (accelerator-based) research infrastructures
- Model for (societal) infrastructures
- Guiding questions:
 - When is an accelerator efficient/responsible?
 - What is feasible and what is not?
 - Which compromises are thinkable?
- Helmholtz-wide consortium to investigate, develop & demonstrate new concepts from components to system solutions
- Implementation in two phases
 - Phase 1: InnovEEA (report in 2024)
 - Phase 2: starting from lessons learned (formulate roadmap in 2026/2027)

Superconducting materials and cryogenics approaches

Magnets and current leads

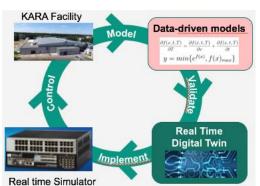
Energy-efficient system design and load management

Operation modes, grid stability & low-carbon footprint (pilot: **KITTEN**)

Coordination: S. Grohmann (KIT)

ARD.00 – ENERGY-RESPONSIBLE ACCELERATORS

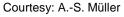
link to Research Field ENERGY



Superconducting materials and cryogenics approaches

Energy-efficient system design and load management Innoveed

Operation modes, grid stability & low-carbon footprint (pilot: KITTEN)



test field
KITTEN

ARD.00 – ENERGY-RESPONSIBLE ACCELERATORS

link to EU wide activities

Workshop "Energy Efficient Beam Transport Technologies" 26. April 2021 / ZOOM

PerMaLIC Collaboration

(ALBA, CLS, DESY, Diamond, ELETTRA, ESRF, HZB, IAS, MAX IV, PSI, SOLARIS, SOLEIL)

Permanent Magnets for next generation light sources

- LEAPS internal collaboration
- first workshop 22.09.2021

ARD.01 – IMPACT OF MACHINE LEARNING

Coordination ARD.01: Erik Bründermann

Guiding (teaser) questions

- Where does ARD profit from ML and ML-guided research?
- Where are break-even points to conventional approaches?
- Can a common understanding/language/ARD-ML-taxonomy* be found?
- Can ML improve efficiency (incl. energy) and replace tedious/cumbersome tasks?
- Are ML-algorithms transferable? Can they be standardized and easy to use?
- Is ML fast enough for fast-feedback and control tasks?
- What about safety-critical applications, if the ML-decision-process is complex?

Accelerator Operations from components (RF, magnets, lasers, ...) to facility, Simulation, Modeling, Data Analysis, Physics and Engineering Experiments, ...

- Level of digitalization/automation heterogeneous (within and between facilities)
 - Teaser Keywords (no specific order): remote control, industrial control systems, specialized codes, industrial and advanced diagnostics, fast feedback systems, data archiving and management, virtualized servers, network infrastructure, ...
- Beam dynamics, plasma dynamics, accelerator physics codes**, accelerator and optics modelling, ...

Examples:

- accelerator optimization (tuning, correction), autonomous operation virtual diagnostics, digital twins, anomaly detection, forecasting
- surrogate models, time-efficient parameter scanning, optics design

Borders blurred, For Autonomous Accelerators a confluence of it all? * EU taxonomy for sustainable activities

Focus on ARD!

Disclaimer:

No attempt to

be complete!

** Accelerator physics codes - Wikipedia

Courtesy: E. Bründermann

ARD.01 – IMPACT OF MACHINE LEARNING

Task: gather information & best-practice examples with ARD-relevance from stakeholders

- ARD Subtopics (ST1, ST2, ST3, ST4)
- MT-DMA, MT-DTS
- Center contacts: M. Thévenet (DESY), R. J. Steinhagen (GSI), P. Schnizer (HZB), N. Hoffmann (HZDR), E. Bründermann (KIT)
- Initiatives and Pilots (selection no attempt to be complete)
 - 2021-2023 Innovationspool ACCLAIM (coordinators: F. Gaede, DESY; M. Zepf, HIJ)
 - With stakeholders from ARD, DTS, DMA; centers involved: DESY, GSI, HIJ, HZB, HZDR, KIT
 - 2021-2023 Innovationspool InnovEEA (coordinator: S. Grohmann, KIT), ML-relevant sub-topic at KIT: load management.
 - Centers involved: DESY, GSI, HZB, KIT
 - 2020-2022 Helmholtz Al "ML toward Autonomous Accelerators" (coordinator, PI: A. Eichler, DESY; PI: E. Bründermann, KIT)
- Helmholtz Information & Data Science (HAICU, HIFIS, HIDA, HIP, HMC, HDF, ...)
- Research Field Information
- **ErUM-Data** activities (10-year BMBF-Aktionsplan published Nov 2020, 1. Call published June 4th: Software & Algorithms incl. Al & ML)

Activities: observe, collect, review & prepare evaluation of impact to complete milestone

- <u>Exploit synergies</u> as much as possible
- Organization of & participation in workshops as needed
- Idea: establish modern collection-/link-site with one entry point for ARD-relevant ML usage to review
- Toward Q4/2023: ARD workshop "Impact of ML on the ARD-research program", communicate results

Thanks for input by the center contacts, IP(s), Helmholtz AI, individuals, ...

Courtesy: E. Bründermann

We invite you

INNOVATION POOL – ACCLAIM

ACCELERATING SCIENCE WITH ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Coordinators: M. Zepf (HIJ), F. Gaede (DESY)

Innovation Pool Project

01.01.2020 - 31.12.2023

Programs and Topics:

MT-DTS, MT-ARD, MT-DMA, MU

Participating Centers:

DESY, GSI, HIJ, HZB, HZDR, KIT

Total Budget:

551 kEUR/a + matching 197 kEUR/a

- All WPs related to MT-ARD
- Work has started successfully, hiring process concluded

WP1: Al-Methods for optimization of plasma accelerators and their laser systems (DESY, HIJ, HZDR, KIT)

- · real-time feedback of laser parameter measurements
- · Al assisted control of accelerator, diagnostic and detectors systems
- · fast reconstruction of the governing system based on experimental diagnostics

WP2: Application of AI for the tuning and control of accelerators (DESY, GSI, HZB, KIT)

- · fully automated setting of accelerator control parameters such as the injection rate
- application of ML to accelerator modelling, correction, control and startup
- · RL agents for injection efficiency/orbit correction/beamline focus optimization

WP3: Machine Learning methods for anomaly detection (DESY, GSI, HZB, KIT)

- · prediction and anomaly detection for accelerator measurements
- · ML assisted root-cause analysis in case of accelerator failure
- · Al assisted anomaly detection for failure forecasting and predictive maintenance

WP4: ML methods for efficient physics simulation (DESY, HZDR)

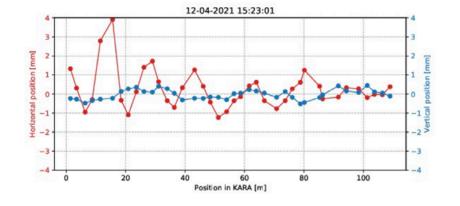
- · application and improvement of generative networks to fast and realistic simulation of detectors responses
- simulations of laser and electron driver evolution in plasma-based accelerators by data-driven surrogate models
- explore the possibility of combining ML-simulations with Quantum computing

INNOVATION POOL – ACCLAIM - EXAMPLE

ACCELERATING SCIENCE WITH ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Coordinators: M. Zepf (HIJ), F. Gaede (DESY)

WP3: Machine detection and prediction of anomalies (DESY, GSI, HZB, KIT)


First efforts on BPM anomaly detection

Challenges:

- Only slow acquisition data available (1 Hz)
- Only 7 failures recorded since 2016
 - Data asymmetry

Next steps:

- Identify the different types of failures
- Build representative labeled dataset
- Simulations to complete data?
- Use supervised learning methods (forest)
- Clustering in parameter space instead of time series analysis?
- Autoencoder? (once the main patterns are identified, outliers are revealed)

INNOVATION POOL – InnovEEA INNOVATION POOL PROJECT FOR ENERGY EFFICIENT ACCELERATORS

Participating centers: DESY, GSI, HZB, KIT

Project coordination: Steffen Grohmann, KIT

Goals

- Improve energy efficiency and environmental impact
- Reduce effort of accelerator operation

 Focus: Energy-efficient cryogenics, SRF and hybrid magnet technologies, flexible load management with AI

Relevance

- Answers to societal challenges
- Respond to MT review recommendation: energy-efficient R&D for future technical infrastructures and accelerator projects
- Education: Engagement of junior researchers from M.Sc. to Ph.D.
- Duration: 3 years
- Total Costs: 430 k€p.a. (405 k€p.a. for personnel)
 - Funded by IP: 345 k€p.a. (330 k€p.a. for personnel)

INNOVATION POOL – InnovEEA

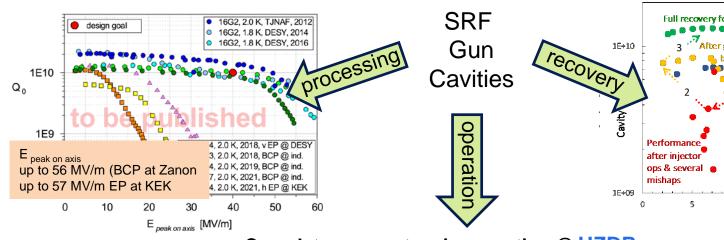
INNOVATION POOL PROJECT FOR ENERGY EFFICIENT ACCEPTATORS

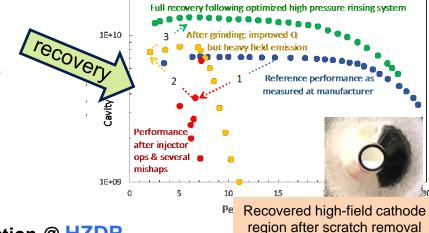
Implementation and objectives

- New technical solutions, incl. mixed refrigerant cycles
- New superconductor treatments and SRF cavity cooling concepts
- Design of hybrid magnets: permanent magnet dipole-quadrupoles, high-gradient multipoles
- Al for new and optimized operating methods of components and acc.
 Development of synergies with FB Energie (Energy Lab 2.0 at KIT)
- Data from BESSY, FAIR and XFEL
- ARD accelerator test facility with sensor network:
 Karlsruhe Research Accelerator (KARA)
- Vision: Energy-efficient, "turn-key" magnet systems and CW SRF accelerator modules

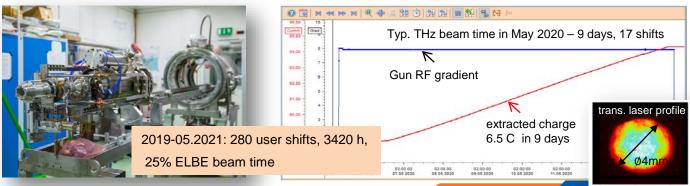
Work packages

- Cryogenics
- SRF technology
- Magnet technology
- Load management

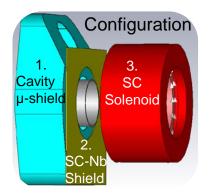


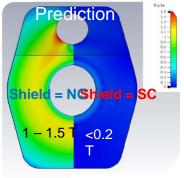

ST1 – SCIENCE

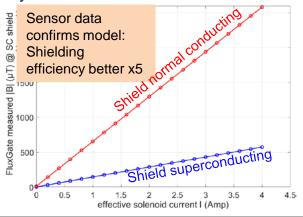
SRF gun development at three centers



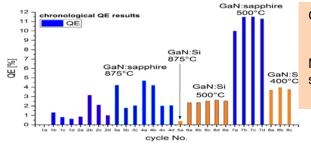
damage recovery of SRF Photoinjector @ HZB


Complete gun system in operation @ HZDR




ST1 - SCIENCE

Development of new SC-Nb shield to prevent saturation of cavity µ-shield by solenoid field @ HZB



Flux density in cavity shield

Study on new photocathode: GaN(Cs)@ HZDR

GaN:sapphire reached 11% QE @310nm, life time 1 months

Next: study GaN on metal cathode (cooperation with Uni Siegen)

New SRF gun for LCLS-II-HE project (cooperation SLAC-FRIB-HZDR-ANL)

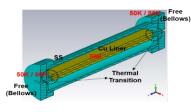
ST2 – CONCEPTS & PROTOTYPES FOR MAXIMUM PERFORMANCE

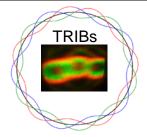
Enhanced beam intensities, beam qualities and efficiency

World-record ramped SC magnets

Slot-ring coupler for stochastic cooling

High temperature Superconductors


Vacuum chamber and cryo-tests

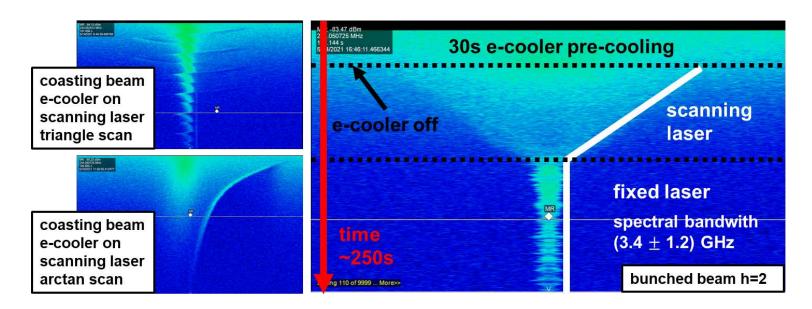

Bunch separation at BESSY II/III

- Develop superconducting fast-ramped, low-loss magnets

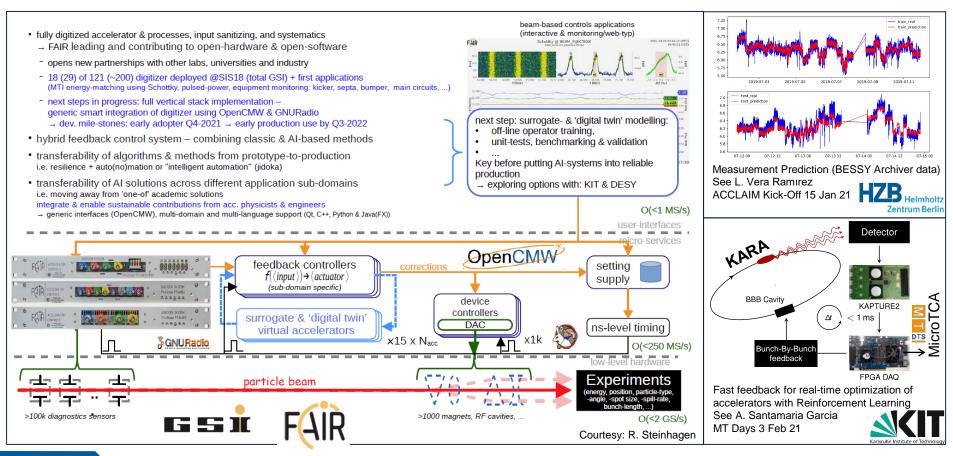
 → design review 2024
 and cable technologies for highest efficiencies
- Push the intensity, quality and efficiency frontier with prototypes and experiments
 - → assessment of limits and options to improve 2024
- Enable novel and efficient operation modes for storage rings
 - → summary and evaluation of progress in 2026

- energy storage
- power transmission lines
- reduced environmental footprint

See also MS ARD.00, pilot InnovEEA Synergy: ARIES Workshop, 26 Apr 21 https://indico.gsi.de/event/11642/

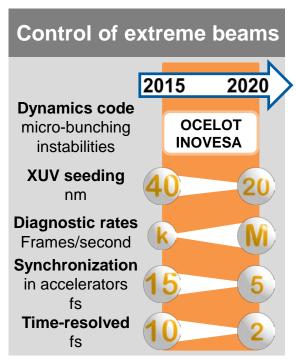


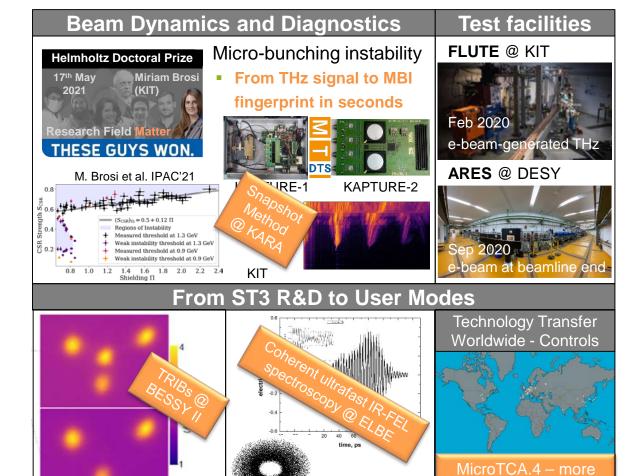
GSI, HZB, KIT


ST2 – Broadband laser cooling @ ESR 2021

- C³⁺ test beamtime May 2021 @ ESR
 - First broadband laser cooling of a stored relativistic ion beam using a novel pulsed high rep.-rate
 (~10 MHz) UV laser system, tuneable bandwith (3.4 up to 36 GHz)

ST2 - DIGITIZATION, INTEGRATION AND ADVANCED BEAM CONTROL


$\Delta t = 0.2 - 10 \mu s$ **NEWS – PITZ WILL OFFER R&D FOR CANCER THERAPY** Uniquely wide beam parameter space available at PITZ, even far beyond current state-of-the-art FLASH therapy 0.1 - 1 sBunch (peak) 10² nC dose rate 10⁰ Average dose rate within time needed for 10 Gy [s] train (1 ms) 10⁻² Dose per 10⁻⁴ second **Conventional RT** J.Bourhis et al., fC RaO 139 (2019) 11-17: St. Bartholome 10⁻⁸ Christie **Febetron** 10⁻¹⁰ Curie Lausanne Stanford 10⁻¹² **ESRF** 10⁻² 10⁰ 10² 10⁴ 10⁶ 10⁸ 10¹⁰ 10¹² 10¹⁴ 10¹⁶ dose rate [Gy/s] Assumptions for plot: ~20 MeV electron beam in water Courtesy of Frank Stephan, James David Good,

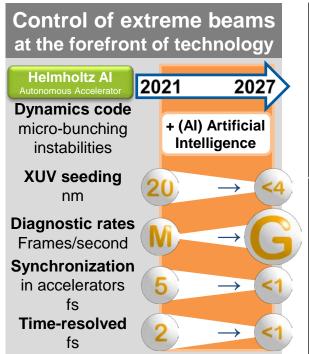

with 1mm3 irradiation volume.

ST3 – SCIENCE POF-3

A hub to DTS and connecting Sub-Topics

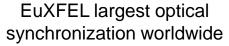
DESY, HZB, HZDR, KIT

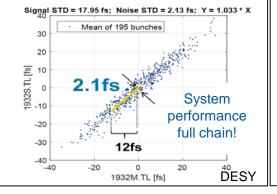
polar plot of FEL phase

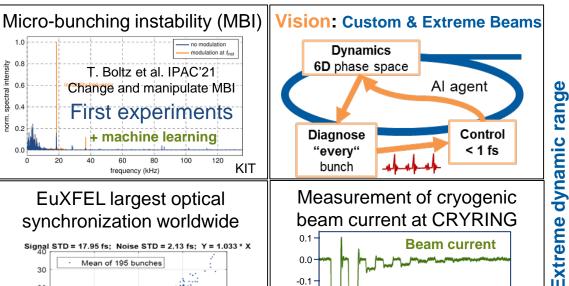

than 70 user groups

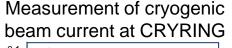
HZDR

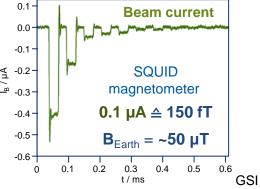
HZB


ST3 – SCIENCE POF-4 ADVANCED BEAM CONTROL, DIAGNOSTICS & DYNAMICS


Heart beat of Matter – Faster, more throughput, at highest precision - a hub to DTS and DMA

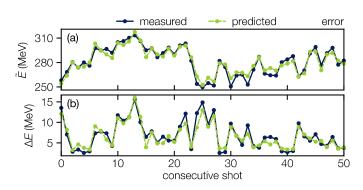






9th MT-ARD-ST3 Meeting, Sep 29 to Oct 1, 2021, https://indico.desy.de/indico/event/28823/

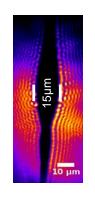
GSI,

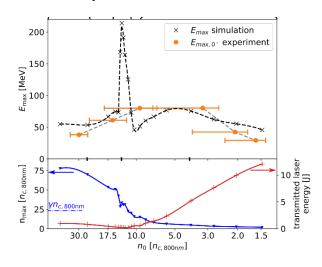

HZDR,

DESY,

ST4 – FROM PLASMA ACCELERATION TO ACCELERATORS

Advanced online diagnostics and Machine Learning improve performance


ML-based surrogate model of LPA experiment



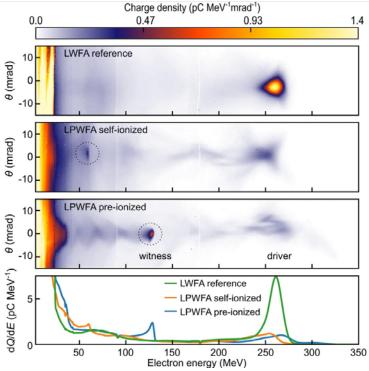
- Data from laser-plasma accelerator trains a surrogate model and enables single-shot predictive modeling
- Bayesian optimization enables sub-percent energy spread

M. Kirchen et al., PRL 126, 174801 (2021) S. Jalas et al., PRL 126, 104801 (2021)

Density scan controlled proton acceleration

 On-shot plasma expansion monitoring and control enables quantitative modeling and identification of magnetic vortex acceleration to beyond 80 MeV proton energies with rep-rate capability

M. Rehwald et al., in submission (2021)



ST4 – APPLICATIONS OF LASER PLASMA ACCELERATORS

Compact LWFA driven PWFA development platform

- LWFA accelerated elctron bunches with extreme peak currents beyond 10 kA are employed to drive a PWFA stage
- Controlled injection (density down ramp and others, not shown) in the second stage aims for improved beam quality
- Acceleration gradients of 120 GV / m measured

T. Kurz et al., Nature Communications 12, 2895 (2021)

ErUM-DATA

- Call for proposals for ErUM-Data cross-community projects published!
- Proposal for **ErUM-Data-Hub** in preparation by editorial team of the ErUM communities.

Q & DE

© CERN / Thomas Mc Cauley

- ErUM-Data project proposals
 - 2-step process
 - Deadline: September 1, 2021

Call for proposals – published June 4th Software & Algorithms (AI & ML)

June 24th ErUM-Data information meeting

Screenshot June 2021:

pt.desy.de/bekanntmachungen/12052021___ data/index ger.html

www.beschleunigerphysik.de/de/kfb/

Stand 03.06.2021

Word-Vorlage > ErUM-Data

Juni 2021 2

A Bekanntmachung

Bundesanzeiger (614KB) Stand 04.06.2021 Word-Vorlage (46KB)

Informationsveranstaltung - 24.

ErUM-DATA

- Deadline for first drafts of applications 01.09.2021
- Funding from 01.07.2022 on
- Topics "Software and Algorithms" with Focus AI & MLS
- "Verbundforschung" = Universities, Research Centres, Industry
- Collaborations between different communities (SR, HEP, Hadrons, n, Astronomy, Observatories, ...)
- Development of transferable Tools no local/isolated solutions

ErUM CALL 2021

Research of matter with large-scale facilities (photons, neutrons, ions)

Every three years, usual schedule: strategy meeting BMBF/KfB in May, call in September 2021, **KfB workshop in September 2021**, deadline for proposals November 1, funding July 1 2022

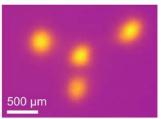
Survey of hot accelerator-related topics

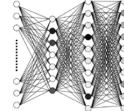
A) Related to existing facilities

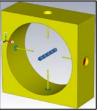
General: superconducting RF, stabilty, energy efficiency, diagnostics, simulation, machine learning ...

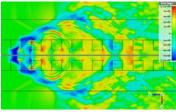
Synchrotron light sources: longitudinal/transverse dynamics, short pulses, undulators (superconducting, in-vacuum) ...

Free-electron lasers: injectors with high repetition rate, seeding, synchronization, diagnostics of short bunches and pulses ...


B) Related to future "conventional" facilities


General: compact facilities (e.g. neutron sources) and components ... **Photon sources:** multi-bend achromats (BESSY III, PETRA IV), ERLs, terahertz sources (DALI) ...


C) Related to "advanced" accelerators


Laser-plasma: hybrid concepts, injection into conventional rings ... **Dielectric accelerators:** higher energy (MeV, GeV) ...

