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Motivation Methods and Results Software development
Accurate numerical modeling of extreme states of matter (warm Workflow of machine-learning surrogate model replacing traditional Kohn-Sham density functional

dense matter) requires multiscale materials modeling across theory calculations for materials at a given temperature and pressure.

length and time scales near first-principles accuracy. st — — ’\’ M= A -@-@

Fingerprint generation Trained ML-DFT model ML-DFT analysis Materials Learning Algorithms
Challenge E e |
. f . . . Atomic NAP Machine-learnin, DFT total
This requires data generation of electronic structures of diverse —— : : 1 g LDOS
R N . A o N . configuration fingerprints inference free energy h -//github / / |
atomic configurations at a scale which is infeasible with current ttps://github.com/casus/mala_poc

algorithms.

o
R0 o

Open source software releases

4
Y 3 . .
) anned in stages along wi e
Goal : i pl d tag long th key
) ) > 2 publications.
We bypass the computational bottleneck of DFT by leveraging 13 i
machine learning to enable applications relevant for: : .
e Physics of planetary and stellar interiors (a) Snapshot of an atomic ~ (b) Bispectrum (c) Feed-forward neural  (d) ML-DFT prediction of  (e) ML-DFT prediction of Preprint
o ICF capsules on their pathway towards ignition configuration. components at each point  network. the local density of states  the DFT total free energy You can find further details in our
L A L7 . on a Cartesian grid. for an atomic snapshot on  for both solid and liquid preprint (arXiv:2010.04905)
e Radiation damage in both fission and fusion reactor walls a Cartesian grid. phases. —_—
e Novel materials discovery .
A For further questions please contact
. Key result a.cangi@hzdr.de.
o
= First-principles Unified ML model for both liquid = _63300 © DFT LDOS Targets
c methor! and solid aluminum g o ML-Hybrid Predictions Collaborators, Stakeholders, Press
.g 5 63200 —— Liquid/Solid Snapshots
] QM Machine-learning A single ML-DFT model yields e
3 Electronic accurate results (LDOS, electronic > -63100 ﬁan_dla | OAK RIDGE
IS Structure ce-scale density, band energy, and total 5] 858386 ational National Lab
o > ! 2 08°080¢g 8o Laboratories ational Laboratory
S Prediction wlations energy) for both crystalline and w —63000 o o
liquid aluminum. £ 080880 __8p
~ . . ° ° [} ARTIFICIAL INTELLIGENCE
) ) -62900
3 Con;;:;lullly,l:,!:?v;nlts Total (fl’ee) energ|es agree W|th = HELM HOLTZAI ‘ COOPERATION UNIT
© Magnetohydrodynamics conventional DFT calculations to 0 5 10 15 1 HELMHOLTZ
Particle-in-Cell : :
§ article-in-Cel well within chemical accuracy Al 933K Snapshot H I DA Information & Data Science Academy
o — w
< I I (1 kcal/mol = 43.4 meV/atom). SlaJTL IIEI."S

Uniwersytet STAATSMINISTERIUM

FOR WISSENSCHAFT
¢/ Wroctawski KULTUR UND TOURISMUS

nm, fs cm, ms A== ﬁﬁ?\;gggﬁ'}é (’C'
DRESOEN 108 ENODRS DRESDEN

Length and time scales

B OB B .

CBG

Freistaat Federal Ministry
Seisen B | et

and Research



https://arxiv.org/abs/2010.04905
mailto:a.cangi@hzdr.de

