

Karlsruhe Institute of Technology

Prototype Design of Timing and Fast Control in the CBM experiment

V. Sidorenko¹, W.F.J. Müller², J. Becker¹ ¹ Karlsruhe Institute of Technology, ² GSI Helmholtz Centre for Heavy Ion Research

1. Data Acquisition System

- GBTx-based readout
- **Self-triggered** front-end electronics
- **1 TB/s** data stream from FEE to FLES
- CRI boards mounted as PCIe cards **Free-streaming** data processing **Online** event reconstruction

- System reference timestamp is periodically **broadcast** by the master node
- Endpoint calculated **relative** time offset
- Local 40 MHz system clock is **aligned** with the first received frame
- Clock phase and time corrections are offloaded to software

Position of 40 MHz clock edge is recovered using a subcycle counter Start of the received reference message marks the system-wide subcycle 0

2. Timing and Fast Control

TFC mission:

- **Distribution** of a 40 MHz system clock to data acquisition electronics
- System-wide time synchronisation
- Latency-optimised deterministic data transmission path for fast control

6. FPGA core architecture

System highlights:

- Master and Submaster nodes support up to 48 and 47 downlink connections respectively
- Three **node classes**: master, submaster and endpoint
- TFC nodes are interconnected with 4.8 Gb/s optical links
- Transport clock 120 MHz
- **64-bit timestamp** counters

3. Hardware platform

FPGA board: BNL-712, TTC-PON mezzanine

- Xilinx Kintex UltraScale XCKU115 FPGA
- **48** optical links (MiniPOD, SFP+ (mezz.))
- **Si5345** MGT-enabled jitter-cleaning PLL
- **PCIe** Gen-3 16-lane

4. Clock distribution

Master core:

- 64-bit timestamp is transmitted with 1 ms period
- Transmission starts on subcycle 0
- Transmission period is configurable from 1 μ s to 35 s

Common features:

- Low-level link initialisation and fault recovery (hot-plug)
- Link status is monitored over Wishbone

Endpoint core:

- Various user clocks are generated and phase-aligned
- Generated clock phase is configurable with 18.6 ps steps

System clock is propagated across the network in a **cascaded** fashion

Each non-master node **recovers** clock from the incoming optical link

The recovered clock is **forwarded to** the hardware **jitter-cleaning PLL** (Si5345)

Jitter-cleaned clock is reused for optical transmission and as a local system clock

Rx and Tx clock domain crossings are implicitly handled by the Link Access Unit

Link access prioritisation for future fast control

7. Prototype setup

Forward timestamp propagation scheme 120 MHz TFC transport clock, 40 MHz experiment-wide system clock Cascaded clock propagation scheme System clock synchronisation with a subcycle counter Extensive integration tests to start in July

KIT - The Research University in the Helmholtz Association

