The STS1 Detector for the FAIR Phase-0 Experiments with HADES

G. Perez-Andrade¹, P. Wintz¹ and J. Ritman^{2,1} for the PANDA@HADES Collaboration ¹Institute for Nuclear Physics of the Research Center Jülich ²GSI Helmholtz Centre for Heavy Ion Research

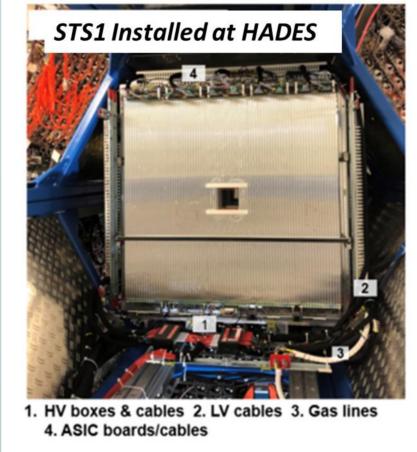
The HADES experiment

HADES (Fig. 1) studies the **properties of baryonic resonances** produced in proton or pion induced reactions [1]. The spectrometer is now being upgraded to enable the experiments included in the **FAIR Phase-0 program**, such as **measurements of hyperon radiative decays** [2].

The newly installed forward detectors are two **new Straw Tracking Stations (STS1 - STS2)** and a Forward Resistive Plate Chamber (FRPC). These increase the HADES angular acceptance to low polar angles between θ = 0.5 and 7° (Fig. 2). The **STS1 was built at the IKP of the Research Center Jülich** and is described here.

GSI JÜLICH

Forschungszentrum


STS1 detector system

Four double layers of **self-supporting gas-filled straws**. Each straw is made of $27\mu m$ thin Al-Mylar film tube with a 20 μm thin W/Re wire.

704
76 cm / 10 mm
Ar/CO2(10%) @ 2 bar
0 °, 90 °, 90 °, 0°
8 × 8 cm^2
44x FEBv3, 88x PASTTRECv1
~ 3.50 m

Pre-commissioning tests and installation

[ns]

Full system tests (cabling, supply lines, ASIC-FEBs and TRB3-DAQ) focused in verifying that all components work properly. The individual **optimal signal baseline (BL)** to obtain **clean drift time spectra** and **aligned Time over Threshold (ToT) for all channels** (Fig 6) were determined.

A charged particle traversing a straw produces **ionization electrons** which drift towards the wire and generate an electric signal (Fig. 3).

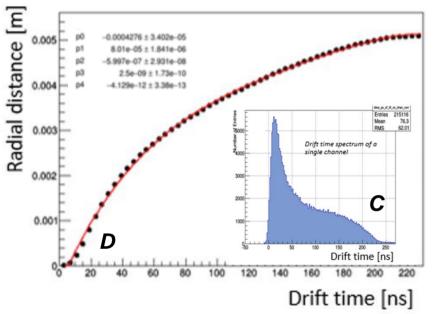


Figure 4. C) Typical single channel drift time spectrum D) Isochrone radius [m] versus electron drift ime [ns]. The data points (black) are fit with a fourth degree polynomial (red)

By collecting **all signals** delivered by the STS1 (and STS2) the particle **track is reconstructed**. A detailed explanation of the calibration/tracking is found in [2].

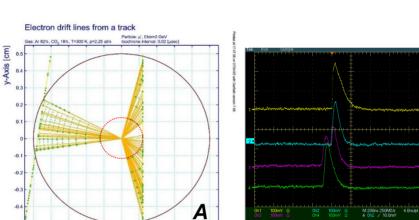
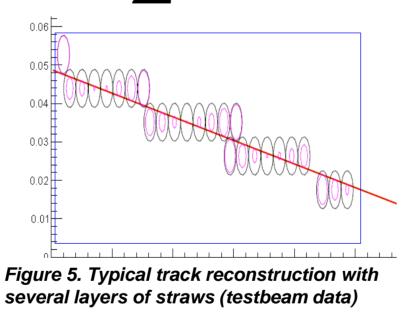
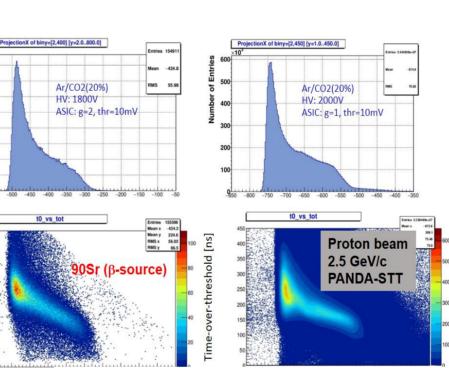



Figure 3. A) Path of drift electrons from ionization point to anode wire. B) Straw signals (in-beam)

A calibration curve (Fig. 4) is generated to relate the isochrone radius $r(t_i)$ and the electrons drift time t_i :


$$\mathbf{r}(t_i) = \sum P_i \times t^i$$

1st tune of all ASIC baselines by noise scaler rate. 2nd precise BL-tune with 90 Sr source signals (β -tracks, up to 2.2 MeV) by ToT alignment (Fig. 8).

Figure 5. Photograph of the STS1 fully cabled at HADES

ہ of

TDC Time [ns] TDC Time [ns]

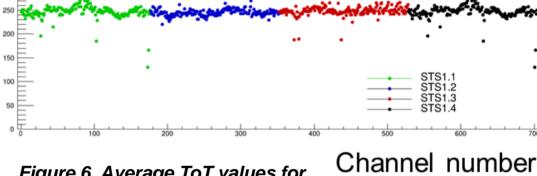
Figure 7. Similar spectra for ⁹⁰Sr β -tracks and (mip) proton beam tracks (~40% difference in dE/dx range between β and mip).

Pre-commissioning summary

- All straws without failure (*e.g.* no broken wire, ...).
- Several months of stable detector operation in Jülich.
- The STS1 was installed at HADES at the end of 2020 (Figs. 5,9).

HADES Commissioning Beamtime (February 2021):

- SIS18 delivered proton beam with 2 GeV and 4.2 GeV kin. energy
- STS1 operation was stable and no self-sustaining currents were observed even at the highest beam intensities (10⁵ p/s per straw)
 Several data takings for different ASIC settings were completed.
 Very low noise was observed, raw data shows clean ToT spectra


Figure 9. STS1 station installed at HADES

Summary and outlook

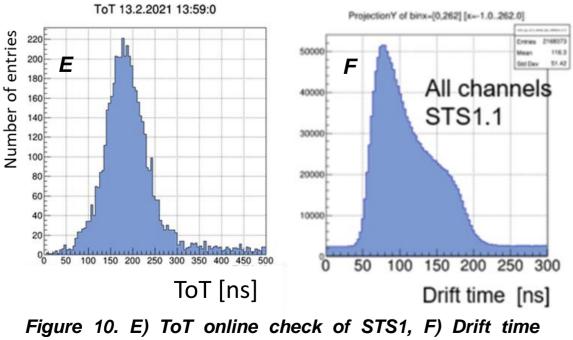
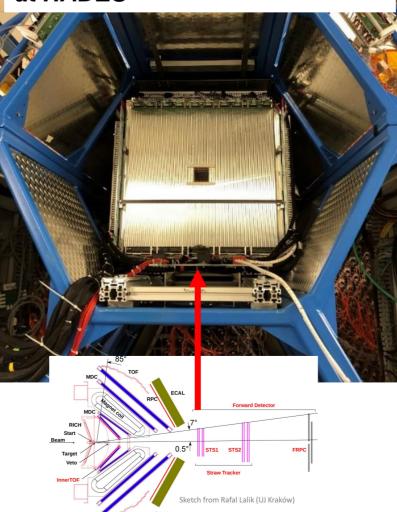

 STS1 station and readout system was successfully tested under experiment conditions

Figure 6. Average ToT values for all 704 straws (HV = 1800 V) $\int_{BL_2}^{0} \frac{1}{D} \int_{BL_1}^{0} \frac{1}{D} \int_{D} \frac{$


Figure 8. The ToT gives information about signal width. It can be used to adjust the BL values of the individual channels: the closer the baseline is below the threshold, the higher the measured ToT and vice versa.

STS1 Channel ToT alignment after ⁹⁰Sr fine-tuning

spectrum from first double layer of STS1

- A rich data base is now available for analysis
- Data offline analysis, development of calibration and tracking algorithms for STS is in progress.
- A four week experiment beamtime with the upgraded HADES is scheduled for early 2022.

References

[1] Agakichiev, G., et al. The high-acceptance dielectron spectrometer HADES. Eur. Phys. J. A 41, 243{277 (2009).

[2] Adamczewski-Musch, J., et al. "Production and electromagnetic decay of hyperons: a feasibility study with HADES as a phase-0 experiment at FAIR." *The European Physical Journal A* 57.4 (2021) 1.

[3] G. Perez-Andrade et al., Self-calibration Method for the In-Beam Test of the PANDA STT, Annual Report 2019 Institut für Kernphysik/ COSY.

AGH

Annual Matter and Technology meeting (2021)

Member of the Helmholtz Association