Generation of intense 0.6 MeV/u carbon bunches for stopping power experiments with the LIGHT beamline

¹Technische Universität Darmstadt, Darmstadt, Germany; ²GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany; ³ Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; ⁴Technische Universität Dresden, Dresden, Germany

M. Metternich^{1,*}, H. Nazary¹, D. Schumacher², C. Brabetz², F. Kroll³, F.-E. Brack^{3,4}, T. Cowan^{3,4}, U. Schramm^{3,4}, A. Blazevic², V. Bagnoud^{1,2}, and M. Roth¹

Generation of intense C-ion bunches

Efficient acceleration of carbon ions

- Field-ionized protons are most efficiently accelerated because of their g/m-ratio
- Hydrogen contaminations on the target surface are removed by ohmic heating -> efficient acceleration of the target surface material (carbon)

Temporal compression and focusing of C-ions (results 2021)

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

Transport and energy selection of carbon ions

Particles with the same magnetic ridigity ρ are getting tranported through the beamline simultaneously

 $\rho = \frac{\gamma m v}{Bq} \to E_1 = \left(\frac{q_1}{q_2}\right)^2 \frac{m_2}{m_1} E_2$ ToF-distance: 3.2 m

➢ H¹⁺(5.4 MeV/u), C⁴⁺(0.6 MeV/u)

Stopping power experiment with LINAC ions at GSI (results 2017)

Stopping power experiments with LIGHT

HELMHOLTZ Helmholtz-Institut Jena

Laser Ion Generation, Handling and Transport

Outlook: stopping power experiments

Stopping power theory

• Typical parameters of laser-generated plasmas (ns-pulse):

- Temperature: 150 eV (~7 ns)
- Density: 10²⁰ cm⁻³ (~7 ns)
- Relevant time frame: 5 10 ns
- Maximal coupling effects when $(v_{proj} \approx v_{th}^{e,1} \propto \sqrt{T_{e,i}})$
 - \succ v_{proj} \approx 0.6 MeV/u

For stopping power experiments with ToF the ion bunch should be as monoenergetic, slow and short as possible

- Low signal-to-noice ratio (micro
- bunches, pinhole and degrader) Rather long bunches ($\sigma \approx 5 \text{ ns}$)
- have to be considered by averaging over the temporal changing plasma parameters (main uncertainty) The degrader which was used for velocity matching $(v_{proj} \approx v_{th}^{e,i})$

increased the energy spread of the ions

- Better signal-to-noice ratio because of the high intensities Shorter ion bunches
- (less uncertanties due to averaging effects) Infrastructure almost
- ready at GSI

16.06.21