Scintillation Screen IP Vacuum Considerations

John Hallford

University College London

09/03/2021

IP Scint Screen Considerations

Proposed elongation of vacuum chamber, pushing electron detectors further back in z, is very welcome

 Better potential energy resolution for fixed position resolution
 The screen is easy/cheap to extend in x direction to recover low energy acceptance (but still limited by magnet/vaccum chamber)

IP Scint Screen Considerations

Better potential energy resolution for fixed position resolution
The screen is easy/cheap to extend in x direction to recover low energy acceptance (but still limited by magnet/vaccum chamber)
need space for camera to resolve screen at good angle, at least 20 cm of Air in previous

designs shown

IP Scint Screen Considerations

Optical image through transparent window & at a oblique angle to screen is problematic
Would have to be thick too, to mechanically preserve vacuum
Area would be large too, to cover entire screen, roughly 50 cm * 25 cm

IP Scint Screen Considerations – Camera inside Chamber

- Alternatively if the size of the chamber is not a problem, we may place the cameras inside
- An advantage is no more optical aberration and the chamber is automatically perfectly dark
 - Of course still carries natural complication with reduced access to detectors

IP Scint Screen Considerations – Screen behind Cherenkov

Could have Screen behind Cherenkov, not envisioned to be a problem

-No limit then on space behind to fit cameras

Could then have e-beam miss the screen and be contained within vacuum flange
Still, scattered electrons will pass through screen + air & there can be significant scattering with chamber walls