

Update on systematics of jet cross sections ZEUS meeting

Florian Lorkowski

Deutsches Elektronen-Synchrotron DESY

ZEUS

March 24, 2021

Overview Goal

Update on systematics of jet cross sections

Florian Lorkowski 2021-03-24

Overview Goal

Datasets DIS cuts Corrections One small detai Jet reweightinghin (unfolding) Other systematics Cross section: Summary

Goal of analysis

- Precision measurement of inclusive jet cross sections in DIS
- No ZEUS paper from HERA-II on this subject yet
- This talk: show systematic uncertainties

Cross section definition

- Reconstruct jets using k_⊥ algorithm and weighted p_⊥-scheme (massless jets)
- Hadron level jets
- Corrected for higher order QED effects
- Not corrected for EW effects

Phase space¹

 $\begin{array}{rrrr} 150\,{\rm GeV}^2 < & Q^2 & < 15\,000\,{\rm GeV}^2 \\ 0.2 < & y & < 0.7 \\ 7\,{\rm GeV} < p_{\perp,{\rm breit}} < 50\,{\rm GeV} \\ -1 < & \eta_{\rm lab} & < 2.5 \end{array}$

 1 From now on, call transverse momentum of jets $p_{\perp},$ rather then E_{\perp}

Overview Datasets

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

- Overview Goal Datasets DIS cuts Corrections One small deta Jet reweightin (unfolding) Other systematics Cross section
- Summary

Data

- O3p (trigger simulation incorrect; very low luminosity)
- 04p (up to run 50500) (trigger simulation not ideal; lose $\sim 8\%$ statistics)
- 04p (starting at run 50500)
- ▶ 05e,06e
- ▶ 06p, 07p
- \Rightarrow Total luminosity: 344 pb⁻¹ (189 pb⁻¹ e^-p ; 155 pb⁻¹ e^+p)

MC¹

- Signal: ariadne_high_Q2_NC_{0304p,05e,06e,0607p}
- Signal: mps_high_Q2_NC_{0304p,05e,06e,fixlst_0607p} (for model variation)
- Background: PHP_HER_{dir,res}_4D_{0304p,05e,06e,0607p}

 $^1\,0304p$ run periods are have a cut on $\tt SimRun,$ to match the runperiod in the data

Overview DIS cuts

Update on systematics of jet cross sections

Florian Lorkowski 2021-03-24

Overview Goal Datasets DIS cuts

- One small deta Jet reweightin (unfolding) Other
- systematics Cross sectior
- Summary

Phase space

- ▶ $Q_{da}^2 \in [150, 15000] \, \text{GeV}^2$
- ▶ 0.2 < y_{da} < 0.7

DIS selection

- At least one EM electron with \(\rho\) > 0.001
- ► *E*_{el} > 10 GeV
- ▶ *E* − *p*_z ∈ [38, 65] GeV
- ▶ El. isolation: Enin < 10%

Quality flags/triggers

- ▶ EVTAKE \in {1, 2}
- Several triggers¹ new

Background removal

- ► |z_{vertex}| < 30 cm</p>
- $\sqrt{\chi^2_{
 m vertex}} < 10$

MC deficiencies

Reject QED compton²

Tracking

- If 0.3 < θ_{el} < 2.85: Electron has track with:
 - ▶ *p* > 3 GeV
 - ▶ DCA $< 10 \, \text{cm}$
- At least one well defined³ vertex track

Detector effects

- Super crack⁴
- RCAL chimney⁵
- RCAL radius⁶

¹ FLT: 28, 30, 36, 39, 40, 41, 43, 44, 46, 47, 50; SLT: SPP1, EXO{1,2,3}, DIS7; TLT: DIS3 ² no other EM electron with $\rho > 0.001$, $\Delta \phi > 3$, $p_{\perp,1}/p_{\perp,2} > 0.8$ and no more than 3 GeV additional CAL energy ³ $p_{\perp} > 0.2$ GeV and passes through at least three superlayers ⁴ z_{el} not in [-140, -98.5] cm or [164, 200] cm ⁵ not (-12 cm < x < 10 cm and y > 80 cm) for RCAL electrons ⁶ r < 175 cm for RCAL electrons

Overview Corrections

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Overview Goal Datasets DIS cuts Corrections One small detail Jet reweighting (unfolding) Other systematics Cross sections

DIS corrections¹

- Longitudinal structure function reweighting
- Electron energy resolution correction (not consistent²)
- Vertex position reweighting
- Track matching efficiency reweighting
- Track veto efficiency reweighting
- Polarisation (not yet implemented)
- Absolute electron calibration (detector level → truth level)

All detector corrections are taken as the average of Ariadne and Lepto (factors are similar; combination improves statistics) **new**

- ¹ See talk from 2020-09-15 for details
- ² Correction factors derived using Ariadne differ from the ones derived using Lepto

Jet corrections¹

- ▶ Relative jet calibration (MC detector level → data)
- Absolute jet calibration (detector level → truth level)
- Jet reweighting (MC \rightarrow data) new

Overview One small detail

Overview One small detail

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Overview Goal Datasets DIS cuts Corrections One small detail Jet reweighting (unfolding) Other systematics Cross sections Summary

Detector jet reconstruction

- "Obviously," corrections should be applied before cuts
- E.g. a jet might be corrected
 - $p_{\perp, ext{breit}} = 6.9 \, ext{GeV}
 ightarrow p_{\perp, ext{breit}} = 7.1 \, ext{GeV},$
 - \rightarrow this jet should be used in the analysis

Overview One small detail

Update on systematics of jet cross sections

Florian Lorkowski 2021-03-24

Overview Goal Datasets DIS cuts Corrections One small detail Jet reweighting (unfolding) Other systematics Cross sections Summary Detector jet reconstruction

- "Obviously," corrections should be applied before cuts
- E.g. a jet might be corrected $p_{\perp \text{ breit}} = 6.9 \text{ GeV} \rightarrow p_{\perp \text{ breit}} = 7.1 \text{ GeV}.$
 - \rightarrow this jet should be used in the analysis
- ► BUT: the absolute jet scale correction especially increases the energy of low p_⊥ jets
- ► E.g. a jet might be corrected $p_{\perp,lab} = 0.5 \,\text{GeV} \rightarrow p_{\perp,lab} = 3.1 \,\text{GeV},$ \rightarrow this jet should **NOT** be used in the analysis
- Consequences of incorrect order:
 - Many detector level-only jets (that do not really exist)
 - Low matching efficiency of gen to rec jets
 - Unfolding does not work as intended
 - Systematic uncertainties increased

Purpose of jet reweighting

- Detector simulation has been improved by previous corrections
- MC generator level does not describe data truth level exactly
 data and MC disagree at detector level
 - \rightarrow acceptance estimated using MC will be incorrect
- Reweight MC at generator level such that data and MC agree at detector level
 data and MC agree at generator level (since detector simulation is correct)
 bin-by-bin acceptance correction is applicable
- Alternative to reweighting: matrix unfolding (not in this talk)
 - \rightarrow Response matrix describes detector response without relying on correct generator level distributions (of the quantities in the response matrix)

Model uncertainty

- Both approaches do not work exactly, due to differences in other quantities at generator level
- Unfold data using Ariadne and Lepto MC separately; use their average as central value and their difference as systematic uncertainty

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Overview Jet reweighting (unfolding)

Per-event re Per-jet rew.

Other

systematics

Cross sections

Summary

Jet reweighting (unfolding) Per-event reweighting

Update on systematics of jet cross sections

Florian Lorkowski 2021-03-24

Overview Jet reweighting (unfolding) Overview Per-jet rew. Other systematics Cross sections Summary

Usual approach to jet reweighting¹

- Consider Q^2 and/or p_{\perp} of leading lab jet at detector level
- Fit (complex) function to ratio data MC
- Use fitted function to reweight events at generator level
- Iterate until detector level distributions agree

Method used here

- Reweight in bins Q^2 and p_{\perp} of leading lab jet
- Apply four iterations
 very good agreement at detector level (see next slide)

Jet reweighting (unfolding) Per-event reweighting

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Overview Jet reweighting (unfolding) Overview Per-event rew. Per-jet rew. Other systematics Cross sections Summary

Jet reweighting (unfolding) Per-event reweighting

Cross section uncertainty (full dataset)

ZEUS

Florian Lorkowski 2021-03-24

Overview Jet reweighting (unfolding) Overview Per-event rew. Per-jet rew. Other systematics Cross sections Summary

 O^{2} [GeV²]

Update on systematics of jet cross sections

Florian Lorkowski 2021-03-24

Overview Jet reweighting (unfolding) Overview Per-event rew. Per-jet rew. Other systematics Cross sections Summary

Problem with usual approach

- Only leading jet is reweighted to match
- ► If jet correlations are not described by MC, subleading jets will still be incorrect

Improved approach to jet reweighting

- Matching efficiency for generator level jets to detector level jets is > 97%

 → per-jet reweighting is feasible
- Consider Q^2 and $p_{\perp,\text{breit}}$ of each jet at detector level¹
- Determine two-dimensional correction factors from ratio data MC
- ► Use correction factors to reweight each jet at generator level (before cuts)
- Match detector level jets to generator level jets and copy weights (remaining < 3% of detector level jets are not weighed)</p>
- Apply four iterations
 - \Rightarrow inclusive jet distributions agree very well (see next slide), also double-differentially (see appendix), except for overflow bin $p_{\perp,\rm breit}>50\,GeV$
- 1 First to ρ_{\perp} -bins have been merged for reweighting

Jet reweighting (unfolding) Per-iet reweighting

Update on systematics of jet cross sections

Florian Lorkowski 2021-03-24

Overview Jet reweighting (unfolding) Overview Per-event rew. Per-jet rew. Other systematics Cross sections Summary

Jet reweighting (unfolding) Per-iet reweighting

Cross section uncertainty (full dataset)

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Overview Jet reweighting (unfolding) Overview Per-event rew. Per-jet rew. Other systematics Cross sections Summary

 O^{2} [GeV²]

Other systematics Overview

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Overview Jet reweighting (unfolding) Other systematics Overview Jet energy scale Electron identification Cross sections

Summary

Major sources

- ▶ Jet energy scale change energies of jets by ±1% (±3% if p⊥,lab < 10 GeV)</p>
- Electron identification use Sinistra instead of EM

Minor sources (see appendix)

- Electron energy scale
- Cut values:
 - ▶ p⊥,lab
 - ► E_{el}
 - ► E p_z
 - $p_{\perp}/\sqrt{E_{\perp}}$
 - Zvertex
 - Electron track distance of closest approaches
- PHP background
- Trigger efficiency correction
- Vertex position reweighting
- Polarisation (not yet implemented)

Other systematics Jet energy scale

systematics of jet cross sections Florian Lorkowsk 2021-03-24 Overview Jet reweighting (unfolding) Other systematics

etematics erview energy scale ectron entification

Cross secti Summary

Other systematics Electron identification

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Overview Jet reweighting (unfolding) Other systematics Overview Jet energy scale Electron identification Cross sections

Cross sections

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Overview Jet reweighting (unfolding) Other systematics Cross sections Summary

— H1 data

Data

• HERA-II, 344 pb⁻¹

data

Not corrected for QED effects

$H1^{\dagger}$

- HERA-II, 351 pb⁻¹
- Corrected for QED effects

Uncertainties

- Left: statistical
- Right: systematic
- Center: total

[†]H1 Collaboration, 2014, arXiv:1406.4709

Cross sections

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Overview Jet reweighting (unfolding) Other systematics Cross sections Summary

→ data
→ H1 data

Data

- HERA-II, 344 pb⁻¹
- Not corrected for QED effects

 $H1^{\dagger}$

- HERA-II, 351 pb⁻¹
- Corrected for QED effects

Uncertainties

- Left: statistical
- Right: systematic
- Center: total

[†]H1 Collaboration, 2014, arXiv:1406.4709

Summary

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Overview Jet reweighting (unfolding) Other systematics Cross sections Summary

Summary

- Systematic uncertainties have been evaluated
- Per-jet reweighting reduces model uncertainty

Outlook

- Determine QED and EW corrections
- Compare to theory predictions
- Explore matrix unfolding of jet migrations
- Fit strong coupling constant

Jet control plots

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Jet control plots Uncertainties: variations Uncertainties: cuts

Uncertainties: variations

Electron energy scale

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Jet control plots Uncertainties: variations Electron energy scale PHP background Trigger efficiency correction Vertex position reweighting Uncertainties:

Uncertainties: variations PHP background

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Jet control plots Jncertainties: variations Electron energy scale PHP background Trigger efficiency correction Vertex position reweighting Incertainties: Relative uncertainty

Uncertaint cuts

 $p_{\perp,\text{breit}}$ [GeV]

Uncertainties: variations Trigger efficiency correction

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Jet control plots Uncertainties: variations Electron energy scale PHP background Trigger efficiency correction Vertex position reweighting Uncertainties:

Uncertainties: variations Vertex position reweighting

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Jet control plots Uncertainties: variations Electron energy scale PHP background Trigger efficiency correction Vertex position reweighting Uncertainties: cuts

⊥,lab

4

 $-p_z$

Florian Lorkowsk 2021-03-24

Jet control plots Jncertainties: variations Jncertainties: cuts $P_{\perp,lab}$ E_{el} $E - P_Z$ $p_{\perp} / \sqrt{E_{\perp}}$ z_{vertex} RCAL radius

vertex

Uncertainties: cuts RCAL radius

Uncertainties: cuts Electron track DCA

Update on systematics of jet cross sections

Florian Lorkowsk 2021-03-24

Jet control plc Uncertainties: variations Uncertainties: cuts $P_{\perp,lab}$ E_{el} $P_{\perp}/\sqrt{E_{\perp}}$ Z_{vertex} RCAL radius Electron track DCA

