Top Physics at CDF

Tom Schwarz

University of California - Davis
On behalf of the CDF Experiment

Top Physics at the Tevatron

- Strong Force
 σ_{tt} ~ 7.5 pb
- Electroweak $\sigma_{s+t} \sim 3 \text{ pb}$

How Does Top Decay

• V-A

 $F_0 \sim 0.7$, $F_+ \sim 0$

• **V**_{TB} ~ **I**

What are Top's Intrinsic Properties

- Mass
- Width $\Gamma_t \sim 1.3 \text{ GeV}$
- Spin 1/2
- Charge +2/3

What does Top look like?

- ~ 4 jets
- A single high energy lepton
- Large Missing Energy

- Free parameter in the SM
- Combined with the measured W mass constrains the mass of the Higgs through radiative corrections

Top Mass

Matrix Element Technique: The probability of being signal or background is calculated per event as a function of Mt

- Multiply event probabilities to extract the most likely mass
- Jet Energy Scale is reduced by

measuring from hadronic W decays

 $M_t = 173.0 \pm 0.9_{stat+JES} \pm 0.9_{sys} \text{ GeV/c}^2$

 ΔM / $M \sim 0.7 \%$

Top Mass Combination

- Tevatron Combination updated this July - includes | | results
- Statistical Uncertainty on Jet Energy Scale is largest systematics (~ 0.46 GeV)
- Good agreement across both experiments and channels

$$M_t = 173.3 \pm 1.1 \text{ GeV/c}^2$$

 $\Delta M / M \sim 0.6 \%$

up to 5.6 fb⁻¹

Mass of the Top Quark

Back to the Higgs

Electroweak Fit

 $M_{\rm H} = 89^{+35}_{-26} \, \text{GeV}$

M_H < 158 GeV @ 95% CL

Back to the Higgs

Including LEP Direct Search Limit

M_H < 185 GeV @ 95% CL

Search for the Higgs Particle

- Testing perturbative QCD at high energy
- New production mechanisms may appear as an enhancement (or deficit) in the rate of production

$$\sigma_{tt}^{SM} = 7.5 \text{ pb}$$

tt Cross Section

- Identify top events through kinematics using a Neural Net, trained to distinguish signal from background
- Fit signal/background templates to data
- Measured relative to Z cross section to reduce uncertainty from measured luminosity

tt Cross Section

4.6 fb⁻¹

 $\sigma_{tt} = 7.82 \pm 0.54_{stat+sys} pb$

@ $M_t = 172.5 \text{ GeV/c}^2$

 $\sigma_{tt}^{SM} = 7.5 \text{ pb}$

$$\frac{\Delta\sigma}{\sigma}=7~\%$$

Electroweak Production

$$\sigma_{s+t}^{SM} = 2.9 \text{ pb}$$

NLO: Z.Sullivan, Phys.Rev.D70,114012 (2004) NNNLO: N.Kidonakis, Phys.Rev.D74,114012 (2006)

Forward Backward Asymmetry

- Test of discrete symmetries of the strong interaction at high energy
- Tevatron is special: pp collider
 - NLO QCD predicts small asymmetry from qq→tt̄

$$A_{FB} = \frac{\mathbf{N_{Y>0}} - \mathbf{N_{Y<0}}}{\mathbf{N_{Y>0}} + \mathbf{N_{Y<0}}} \approx 5\%$$

 Ideally suited to discover new big gluons with axial vector coupling

Top Quark Afb

- Reconstruct the top and anti-top direction from their decay products observed in the detector
- Correct for backgrounds, acceptance, and misreconstructed angles

$$A_{FB} = 15 \pm 5_{stat+sys} \%$$

$$5.3 \text{ fb}^{-1}$$

$$A_{FB}^{SM} = 5.0 \pm 1.5 \%$$

Top Quark Afb

 D0 corrects for backgrounds only and compares the result to the SM as seen by the detector

$$A_{FB}^{data-bkg} = 8 \pm 4_{stat+sys} \%$$

$$4.3 \text{ fb}^{-1}$$

$$A_{FB}^{mc@nlo} = I^{+2.0}_{-1.0} \%$$

Searching for a 4th Generation

- Why are there only 3 generations?
- No theoretical reason, only experiment
 - Electroweak Constraints
 - Flavor Physics Measurements
 - Direct Searches

 Tevatron explores phase space beyond these limits

Searching for t'

- Experimentally we treat t as just a more massive top quark (t → Wq)
- Use reconstructed t' mass and the scalar sum of the transverse energy in the event (H_T)

Searching for t'

M_{t′} < 335 GeV @ 95 % CL

4.6 fb⁻¹

M_{t′} < 296 GeV @ 95 % CL

4.3 fb⁻¹

Searching for b'

- Similarly, we can search for b → tW
- Signature is very energetic, jetty events: search in high H_T, high jet multiplicity
- Largest background is tt+jets

Searching for b

- Similarly, we can search for $b' \rightarrow tW$
- Signature is very energetic, jetty events: search in high H_T, high jet multiplicity

Largest background is tt+jets

Data

Searching for b'

Top Physics at the Tevatron

- Strong Force
 σ_{tt} ~ 7.5 pb
- Electroweak $\sigma_{s+t} \sim 3 \text{ pb}$

How Does
Top Decay

• V-A

 $F_0 \sim 0.7$, $F_+ \sim 0$

• V_{TB} ~ I

What are Top's Intrinsic Properties

- Mass
- Width $\Gamma_t \sim 1.3 \text{ GeV}$
- Spin 1/2
- Charge +2/3

Top Physics at the Tevatron

How is Top Produced

$$\sigma_{tt} = 7.50 \qquad \delta \sim 6 \%$$

$$\sigma_{s+t} = 2.8 \quad \delta \sim 19 \%$$

$$\sigma_t = 3.1$$
 $\delta \sim 30 \%$

- Strong Force $\sigma_{tt} \sim 7.5 \text{ pb}$
- Electroweak $\sigma_{s+t} \sim 3 \text{ pb}$

How Does Top Decay

$$F_0 = 0.88$$
 $\delta \sim 10 \%$

$$F_{+} = -0.15$$
 $\delta \sim 10 \%$

$$V_{tb} = 0.88$$

$$\delta \sim 9 \%$$

• V-A

$$F_0 \sim 0.7$$
, $F_+ \sim 0$

What are Top's Intrinsic Properties

$$M_t = 173.3 \delta \sim 0.6 \%$$

$$\Gamma_t = 2.1$$
 $\delta \sim 25 \%$

$$\kappa = 0.7$$
 sig ~ I σ

- Mass
- Width $\Gamma_t \sim 1.3 \text{ GeV}$
- Spin 1/2
- Charge +2/3

Maybe a Surprise?

 $A_{FB}^{SM} = 5.0 \pm 1.5 \%$

Conclusion and the Future

- Precision top physics a reality at the Tevatron
 -1000's of Top Events are now being used in analysis
- Most measurements statistically limited and use a 3rd of the possible final Tevatron dataset (~ I2 fb⁻¹)
- Working closely with our colleagues at D0 on combining results from several measurements -Mass, Cross Section, W-helicity, Spin Correlations, t´
- Searches are now a very active part of our program (~30% of new results). If something is there, we intend to find it!

Backup

- Top decays before hadronization spin information passed to decay products
- SM predicts top pairs produced mostly in opposite-spin states at the Tevatron

$$\kappa = \frac{\mathbf{N}_{\downarrow\uparrow} + \mathbf{N}_{\uparrow\downarrow} - \mathbf{N}_{\uparrow\uparrow} - \mathbf{N}_{\downarrow\downarrow}}{\mathbf{N}_{\downarrow\uparrow} + \mathbf{N}_{\uparrow\downarrow} + \mathbf{N}_{\uparrow\uparrow} + \mathbf{N}_{\downarrow\downarrow}} \approx \mathbf{0.78}$$

Several effects probed: spin, width, qq/gg production

$$\kappa = \frac{\mathbf{N}_{\downarrow\uparrow} + \mathbf{N}_{\uparrow\downarrow} - \mathbf{N}_{\uparrow\uparrow} - \mathbf{N}_{\downarrow\downarrow}}{\mathbf{N}_{\downarrow\uparrow} + \mathbf{N}_{\uparrow\downarrow} + \mathbf{N}_{\uparrow\uparrow} + \mathbf{N}_{\downarrow\downarrow}}$$

K related to decay products angle through:

$$rac{1}{\sigma}rac{\mathbf{d^2}\sigma}{\mathbf{dcos} heta^+\mathbf{dcos} heta^-} = rac{1+\kappa\;\mathbf{cos} heta^+\mathbf{cos} heta^-}{4}$$

where

$$\kappa = \frac{\mathbf{N}_{\downarrow\uparrow} + \mathbf{N}_{\uparrow\downarrow} - \mathbf{N}_{\uparrow\uparrow} - \mathbf{N}_{\downarrow\downarrow}}{\mathbf{N}_{\downarrow\uparrow} + \mathbf{N}_{\uparrow\downarrow} + \mathbf{N}_{\uparrow\uparrow} + \mathbf{N}_{\downarrow\downarrow}}$$

• K related to decay products angle through:

$$rac{1}{\sigma}rac{\mathbf{d^2}\sigma}{\mathbf{dcos} heta^+\mathbf{dcos} heta^-} = rac{1+\kappa\;\mathbf{cos} heta^+\mathbf{cos} heta^-}{4}$$

where

Lepton+Jets Channel

$$\kappa = 0.7 \pm 0.6_{stat} \pm 0.3_{syst}$$

5 fb⁻¹

Di-lepton Channel

$$K = 0.3^{+0.6}_{-0.8}$$

