
Philipp Leser | SUSY10, Bonn, 2010-08-27

Fakultät Physik
Theoretische Physik III

The Higgs as a 
harbinger of
flavor symmetry
based on
G. Bhattacharyya, P.L. and H. Päs, arXiv:1006.5597

1

Philipp Leser (TU Dortmund)



Philipp Leser | SUSY10, Bonn, 2010-08-27

Overview

‣ Motivation / general phenomenological aspects

‣ An example: review of a specific S3 model

‣ Scalar potential and properties of physical 
scalars in the model

‣ Summary
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Motivation – Horizontal symmetries
‣ Vast mass hierarchy between generations of quarks and charged leptons. 

Neutrino mass hierarchy could be much flatter.

‣ CKM matrix and neutrino mixing angles are parameters that are not predicted 
in the SM.

‣ CKM mixing small, PMNS mixing large

‣ Horizontal symmetries have the potential to explain

‣ Masses, mass relations

‣ Patterns in the mixing matrices
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Phenomenology of discrete symmetries
‣ Discrete symmetries like S3, A4, S4, D4, Q4, D5, D6, Q6, D7,… can be used to 

deduce some of these relations

‣ through specific choice of representations for particle content

‣ through vacuum alignment of expectation values 

‣ Typical interesting predictions:

‣ enlarged scalar sector (masses, mixings)

‣ branching ratios of scalar decays differ from SM

‣ unusual collider signatures

‣ FCNCs in scalar decays

‣ sum rules and other connections between lepton and quark sectors
4
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The symmetry group S3

‣ Symmetry group of the permutation of 3 objects.
(equivalent to symmetry group of equilateral triangle)

‣ Natural explanation of maximal atmospheric mixing in the neutrino sector

‣ Contains 6 elements:

‣ (123)  (312), (231)   (132), (321), (213)

‣ 3 irreducible representations: 1, 1′, 2
‣ Basic multiplication rules:

‣ 1′×1′=1 and  2×2=1+1′+2
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A specific S3 model

‣ Two generations → S3 doublet; the other → S3 singlet

‣ One scalar for each generation

‣ Neutrino sector separate, diagonal (See-Saw II, 2 heavy EW triplet scalars)

‣ After SSB and specific alignment ; 
maximal mixing:
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Minimization of the potential
‣ S3 invariant scalar potential (doublets, 8+2 params)

‣ Parameter space reduced by conditions: 

‣ Vacuum state must be a (stable) minimum of 
the potential ( is solution)

‣ Real, positive masses, allow fixed ratio of v3 
and v, squared sum of the VEVs should be 
equal to squared SM Higgs VEV.

‣ Physical CP-even neutral scalars: 
mb light (< 200 GeV),
mc heavier (200 GeV < mc < 450 GeV), 
ma < 350 GeV
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Scalar mixing
‣ After diagonalization the weak basis scalars can be expressed via the physical 

scalars:

‣ The U are analytically tractable but complicated functions of the parameters 
of the scalar potential

‣ For v1 = v2, it follows that U1b = U2b and U1c = U2c

h1 = U1bhb + U1chc −
1
�
2
h�

h2 = U2bhb + U2chc +
1
�
2
h�

h3 = U3bhb + U3chc
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Couplings to gauge and matter fields
‣ Couplings of symmetry basis scalars hi to W and Z are modified by a factor of 

 compared to Standard Model

‣ In terms of physical scalars ha, hb and hc: 

‣ Suppression of the couplings of hb and hc to gauge fields is governed by 
VEVs and scalar mixing parameters

‣ ha does not couple to W or Z via the three-point-vertex

‣ this follows because the ha content in the symmetry basis scalars h1 
and h2 is equal, but has opposite signs.

‣ As the VEVs v1 and v2 are equal, the ha coupling vanishes
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Yukawa couplings
‣ Identical structures in charged lepton sector and up- / down quark sectors

‣ 2 scalars hb,c couple similarly to SM Higgs:

‣  

‣ Additional FCNC coupling: 

‣ The 3rd scalar ha only couples off-diagonally, always with 3rd generation:

‣   

‣ FCNC couplings are numerically small
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hb,c → e�

hb,c → ee(��, dd) hb,c → ��(ss, cc) hb,c → ττ(bb, tt)

h� → eτ(db,�t) h� → �τ(sb, ct)The couplings of hb,c to the quarks and leptons depend on the parameters v, v3,λi and fi, while the couplings of ha to
fermions depend only on fi. The pattern of possible couplings is encoded in the following Yukawa matrices, using the
charged leptons as an example:
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The position of the zeros in the matrices deserves some attention. It turns out that ha,b,c have off-diagonal fermion
couplings at tree level due to the absence of any natural flavor conservation. The numerical entries of the Yukawa matrices
are intimately tied to successful reproduction of quarks and leptons masses and mixings. We will, in the next section,
comment on some of the entries which are relevant for the Higgs properties. But before that, we make two observations:
(i) ha couples only off-diagonally and one of the two fermions has to be from the third generation. (ii) hb,c couple
diagonally as in the SM, but also possess small, numerically insignificant, off-diagonal couplings involving the first two
generations.

4 Collider signatures

The perturbativity condition λi ≤ 1 and the requirement mb ≥ 114 GeV (for which we set v3/v # 0.6) yields mb in
the neighbourhood of 120 GeV and mc within 300 GeV – see the scatter plots in Fig. 1. Both hb and hc would decay
into the usual ZZ ,WW , bb̄, γγ, · · · modes, but the dominant decay mode of hb (or hc) for the case of ma < mb/2 (or
ma < mc/2) would be into haha. Since ha does not couple to gauge bosons, its mass is unconstrained, i.e. ma can be
lower than 114 GeV or larger than 200 GeV. We numerically calculate the strength of the hbhaha coupling from the set of
acceptable parameters characterizing the potential, and introduce a parameter k which is the ratio of the hbhaha coupling
and the hbWW coupling. The magnitude of k depends on the choice of λi and v3. Assumingma = 50 GeV, we obtain k
in the range of (5− 30). Just to compare with a ‘two Higgs doublet model’ [8] for illustration, the corresponding k value,
when the heavier Higgs weighing around 400 GeV decays into two lighter Higgs weighing 114 GeV each, is about 10.

In Fig. 2a we have plotted the branching ratio of hb → haha as a function of mb, for two representative values
ma = 50, 75GeV, and for k ∼ 5 and 30, which correspond to the smallest and largest k obtained from the set of accepted
scalar parameters. We observe that till theWW or ZZ decay modes open up, the branching ratio hb → haha is almost
100%. To calculate the decay widths into the usual modes (other than haha), we have used HDECAY [7] by appropriately
modifying the gauge and Yukawa couplings.

Once we adjust the fi’s to reproduce the fermionmasses and mixing, the off-diagonalYukawa couplings are determined
too. The largest of them corresponds to c̄LtRha, which is about 0.8. The second largest off-diagonal coupling is that for
s̄LbRha, and is about 0.02. The next in line is µ̄LτRha, whose coefficient is about 0.008. The others are orders of
magnitude smaller, and are of no numerical significance. Although flavor changing neutral current processes like Bd–B̄d

and Bs–B̄s mixings proceed at tree level, the suppression caused by the small off-diagonal Yukawa couplings suffices to
keep the new contributions well under control even for a very light scalar mediator.

As Fig. 2b suggests, as long asma < mt, ha will dominantly decay into jets, and one of them can be identified as the
b-jet. The branching ratio of ha → µτ̄ is, nevertheless, not negligible (about 0.1). As shown in Fig. 2c, for ma ' mt,
the branching ratio of t → hac is quite sizable, which falls with increasingma. It may be possible to reconstruct ha from
ha → µτ̄ . In fact, a light ha would be copiously produced from the top decay at the LHC. On the other hand, ifma > mt,
as can be seen again from Fig. 2b, ha decays to tc̄ with an almost 100% branching ratio.

If k is large, then there is an interesting twist to the failed Higgs search at LEP-2. In this case, hb → haha would
overwhelm hb → bb̄, and hence the conventional search for the SM-like scalar (hb, as the lighter between hb and hc)
would fail. This means that both hb and ha may very well be buried in the LEP data.
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Signatures of hb and hc

11
HDECAY: Djouadi, A., Kalinowski, J. and Spira, M.,  Comput. Phys. Commun. 108 56-74 (1998)

‣ Both can decay into usual Higgs decay 
modes ( ), but:

‣ Dominant decay for a light scalar ha is 
three-scalar mode hb/c → ha ha

‣ Parameter k is the ratio between three-
scalar coupling and  hbWW coupling

‣ For ma = 50 GeV, this can be 

‣ Compare to THDM, where it is typically 
 for a 400 GeV scalar decaying 
into two 114 GeV scalars
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Signatures of ha

12
HDECAY: Djouadi, A., Kalinowski, J. and Spira, M.,  Comput. Phys. Commun. 108 56-74 (1998)

‣ As long as ma < mt, the dominant decay 
mode is into jets

‣ Possibly significant decay mode into 

‣ Dominant decay for a light scalar ha is 
three-scalar mode hb/c -> ha ha

‣ Production of ha possible through top 
decays for light ha, subsequent decay into 
 might be possible to detect

‣ For ma > mt, ha dominantly decays off-
diagonally into ct
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Summary
‣ The discrete flavor symmetry S3 can explain the mixing angles and masses of 

the particles in the SM and comes with an enlarged scalar sector.

‣ The potential has been minimized and the scalars diagonalized, yielding:

‣ two SM-Higgs-like scalars hb and hc, except that each of them can decay 
dominantly into pairs of the third scalar ha

‣ The scalar ha with limited gauge interactions although in the symmetry 
basis all are weak doublets

‣ ha has only off-diagonal Yukawa couplings, involving a lepton or quark from 
the third generation

‣ Due to unconventional decay channels, these scalars might already be buried 
in existing LEP or Tevatron data
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Summary cont‘d
‣ This kind of analysis of the scalar sector can be relevant for discriminating 

between different horizontal symmetries in general:

‣ The enlarged Higgs sector can be a harbinger of flavor symmetries!

14
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Scalar mixing cont‘d
‣ One physical scalar is given by  , i.e. there is no 

dependence on the scalar parameters or on the VEVs.

‣ This happens because S3 requires the scalar mass matrix to be of the form

which always yields (-1, 1, 0) as one eigenvector, regardless of a, b, c.

h� = (h2 − h1)/
�
2



� b c
b � c
c c d


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Scalar masses
‣ The squared masses of the CP-even neutral scalars are given by

where

values (vevs) induce spontaneous electroweak symmetry breaking. The quark fields are assigned to the multiplets as
follows (whereQi ≡ (ui, di)

T refers to the ith generation of the left-handed SU(2) doublets):

(Q2, Q3) ∈ 2 Q1, u
c, cc, dc, sc ∈ 1 bc, tc ∈ 1

′ . (2)

2 The scalar potential and the spectrum

The most general S3 invariant scalar potential involving three scalar doublet fields is given by [4, 6]
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After electroweak symmetry breaking, nine degrees of freedom are left: three neutral scalars, two neutral pseudo-scalars
and two charged scalars with two degrees of freedom each. We denote the vevs of φi by vi and assume v1 = v2 = v,
which is a solution for the global minimum and which eventually yields maximal mixing in the fermion sector. We also
assume λi’s to be real. For positive squared scalar masses this indeed corresponds to a minimum of the potential.

We now set out to find the spectrum of the three CP-even neutral scalars. We insert the expansion φ0
i = vi + hi in

Eq. (3) to obtain the mass matrix. After its diagonalisation the weak basis scalars h1,2,3 are expressed in terms of the
physical scalars ha,b,c as

h1 = U1b hb + U1c hc −
1√
2
ha ,

h2 = U2b hb + U2c hc +
1√
2
ha , (4)

h3 = U3b hb + U3c hc ,

where Uib and Uic are analytically tractable but complicated functions of λi’s, v and v3, which we do not display. The
condition v1 = v2 immediately leads to U1b = U2b and U1c = U2c.

The masses of the three CP-even neutral scalars are given by
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A few things are worth noting at this stage:

(i) Since φ1,2,3 are all weak SU(2) doublets, their vevs are related as: 2v2 + v23 = v2SM, where vSM ≈ 246 GeV.
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Yukawas
‣ Mass terms for charged leptons (quarks are treated identically):

‣ After SSB, this leads to the mass matrix:

‣ The specific alignment leads to maximal atm. mixing

‣ Special vacuum alignments like this are needed in most models based on 
discrete symmetries
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