

Fakultät Physik Theoretische Physik III

1

Philipp Leser (TU Dortmund)

The Higgs as a harbinger of flavor symmetry

based on G. Bhattacharyya, P.L. and H. Päs, arXiv:1006.5597

Overview

- Motivation / general phenomenological aspects
- An example: review of a specific S₃ model
 - Scalar potential and properties of physical scalars in the model

Summary

Motivation – Horizontal symmetries

- Vast mass hierarchy between generations of quarks and charged leptons. Neutrino mass hierarchy could be much flatter.
- CKM matrix and neutrino mixing angles are parameters that are not predicted in the SM.
 - CKM mixing small, PMNS mixing large
- Horizontal symmetries have the potential to explain

Phenomenology of discrete symmetries

- Discrete symmetries like S₃, A₄, S₄, D₄, Q₄, D₅, D₆, Q₆, D₇,... can be used to deduce some of these relations
 - through specific choice of representations for particle content
 - through vacuum alignment of expectation values
- Typical interesting predictions:
 - enlarged scalar sector (masses, mixings)
 - branching ratios of scalar decays differ from SM
 - unusual collider signatures
 - **FCNCs** in scalar decays

Sum rules and other connections between lepton and quark sectors Philipp Leser | SUSY10, Bonn, 2010-08-27

valid for large class of models

The symmetry group S_3

- Symmetry group of the permutation of 3 objects. (equivalent to symmetry group of equilateral triangle)
- Natural explanation of **maximal atmospheric mixing** in the neutrino sector

Two generations $\rightarrow S_3$ doublet; the other $\rightarrow S_3$ singlet

- One scalar for each generation
- Neutrino sector separate, diagonal (See-Saw II, 2 heavy EW triplet scalars)

After SSB and specific alignment $\langle \phi_1 \rangle = \langle \phi_2 \rangle = v$; **maximal mixing**: $\mathcal{M}_{\ell} = \begin{pmatrix} f_4 v_3 & f_5 v_3 & 0 \\ 0 & f_1 v & -f_2 v \\ 0 & f_1 v & f_2 v \end{pmatrix}$ this translates directly into PMNS matrix

Minimization of the potential

 $S_{3} \text{ invariant scalar potential (doublets, 8+2 params)} \qquad \sqrt{2\nu} \\ V = m^{2}(\phi_{1}^{\dagger}\phi_{1} + \phi_{2}^{\dagger}\phi_{2}) + m_{3}^{2}\phi_{3}^{\dagger}\phi_{3} + \frac{\lambda_{1}}{2}(\phi_{1}^{\dagger}\phi_{1} + \phi_{2}^{\dagger}\phi_{2})^{2} + \frac{\lambda_{2}}{2}(\phi_{1}^{\dagger}\phi_{1} - \phi_{2}^{\dagger}\phi_{2})^{2} + \lambda_{3}\phi_{1}^{\dagger}\phi_{2}\phi_{2}^{\dagger}\phi_{1} + \frac{\lambda_{4}}{2}(\phi_{3}^{\dagger}\phi_{3})^{2} + \lambda_{5}(\phi_{3}^{\dagger}\phi_{3})(\phi_{1}^{\dagger}\phi_{1} + \phi_{2}^{\dagger}\phi_{2}) + \lambda_{6}\phi_{3}^{\dagger}(\phi_{1}\phi_{1}^{\dagger} + \phi_{2}\phi_{2}^{\dagger})\phi_{3} + \left[\lambda_{7}\phi_{3}^{\dagger}\phi_{1}\phi_{3}^{\dagger}\phi_{2} + \lambda_{8}\phi_{3}^{\dagger}(\phi_{1}\phi_{2}^{\dagger}\phi_{1} + \phi_{2}\phi_{1}^{\dagger}\phi_{2}) + h.c.\right]$

Parameter space reduced by conditions:

- Vacuum state must be a (stable) minimum of the potential $(\langle \phi_1 \rangle = \langle \phi_2 \rangle = \nu$ is solution)
- Real, positive masses, allow fixed ratio of v₃ and v, squared sum of the VEVs should be equal to squared SM Higgs VEV.
- Physical CP-even neutral scalars: mb light (< 200 GeV), mc heavier (200 GeV < mc < 450 GeV), ma < 350 GeV</p>

Scalar mixing

After diagonalization the weak basis scalars can be expressed via the physical scalars:

$$h_{1} = U_{1b}h_{b} + U_{1c}h_{c} - \frac{1}{\sqrt{2}}h_{a}$$
$$h_{2} = U_{2b}h_{b} + U_{2c}h_{c} + \frac{1}{\sqrt{2}}h_{a}$$
$$h_{3} = U_{3b}h_{b} + U_{3c}h_{c}$$

- The U are analytically tractable but complicated functions of the parameters of the scalar potential
- For $v_1 = v_2$, it follows that $U_{1b} = U_{2b}$ and $U_{1c} = U_{2c}$

Couplings to gauge and matter fields

- Couplings of symmetry basis scalars h_i to W and Z are **modified** by a factor of $v_i/v_{SM} < 1$ compared to Standard Model
- In terms of physical scalars h_a , h_b and h_c :
 - Suppression of the couplings of h_b and h_c to gauge fields is governed by VEVs and scalar mixing parameters
 - ► *h_a* does not couple to *W* or *Z* via the three-point-vertex
 - this follows because the h_a content in the symmetry basis scalars h₁ and h₂ is equal, but has opposite signs.
 - As the VEVs v_1 and v_2 are equal, the h_a coupling vanishes

Yukawa couplings

- Identical structures in charged lepton sector and up- / down quark sectors
- 2 scalars *h*_{b,c} couple **similarly to SM Higgs**:
 - $h_{b,c} \to ee(uu, dd) h_{b,c} \to µµ(ss, cc) h_{b,c} \to ττ(bb, tt)$
 - Additional **FCNC** coupling: $h_{b,c} \rightarrow e\mu$
- The 3^{rd} scalar h_a only couples off-diagonally, always with 3^{rd} generation:
 - $h_a \to e\tau(db, ut) \qquad h_a \to \mu\tau(sb, ct)$
- FCNC couplings are numerically small

$$Y_{h_{a}} = \begin{pmatrix} 0 & 0 & Y_{e_{L}\tau_{R}}^{a} \\ 0 & 0 & Y_{\mu_{L}\tau_{R}}^{a} \\ Y_{\tau_{L}e_{R}}^{a} & Y_{\tau_{L}\mu_{R}}^{a} & 0 \end{pmatrix}, \quad Y_{h_{b}} = \begin{pmatrix} Y_{e_{L}e_{R}}^{b} & Y_{e_{L}\mu_{R}}^{b} & 0 \\ Y_{\mu_{L}e_{R}}^{b} & Y_{\mu_{L}\mu_{R}}^{b} & 0 \\ 0 & 0 & Y_{\tau_{L}\tau_{R}}^{b} \end{pmatrix}, \quad Y_{h_{c}} = \begin{pmatrix} Y_{e_{L}e_{R}}^{c} & Y_{e_{L}\mu_{R}}^{c} & 0 \\ Y_{\mu_{L}e_{R}}^{c} & Y_{\mu_{L}\mu_{R}}^{c} & 0 \\ 0 & 0 & Y_{\tau_{L}\tau_{R}}^{c} \end{pmatrix}$$

Signatures of h_b and h_c

- Both can decay into usual Higgs decay modes (ZZ, WW, bb̄, γγ, ...), but:
- **Dominant decay** for a light scalar h_a is three-scalar mode $h_{b/c} \rightarrow h_a h_a$
- Parameter *k* is the ratio between threescalar coupling and *h*_bWW coupling
 - For $m_a = 50$ GeV, this can be $5 \leq k \leq 30$
 - Compare to THDM, where it is typically
 k ≈ 10 for a 400 GeV scalar decaying
 into two 114 GeV scalars

11

Signatures of *h*_a

- As long as m_a < m_t, the dominant decay mode is into jets
- Possibly significant decay mode into $\mu \tau$
- Dominant decay for a light scalar h_a is three-scalar mode h_{b/c} -> h_a h_a
- Production of h_a possible through top decays for light h_a, subsequent decay into µ\u03c0 might be possible to detect
- For m_a > m_t, h_a dominantly decays offdiagonally into ct

Summary

- The discrete flavor symmetry S₃ can explain the mixing angles and masses of the particles in the SM and comes with an enlarged scalar sector.
- > The potential has been minimized and the scalars diagonalized, yielding:
 - two SM-Higgs-like scalars h_b and h_c, except that each of them can decay dominantly into pairs of the third scalar h_a
 - The scalar h_a with limited gauge interactions although in the symmetry basis all are weak doublets
 - h_a has only off-diagonal Yukawa couplings, involving a lepton or quark from the third generation
- Due to unconventional decay channels, these scalars might already be buried in existing LEP or Tevatron data

Summary cont'd

- This kind of analysis of the scalar sector can be relevant for discriminating between different horizontal symmetries in general:
- The enlarged Higgs sector can be a harbinger of flavor symmetries!

Scalar mixing cont'd

- One physical scalar is given by $h_a = (h_2 h_1)/\sqrt{2}$, i.e. there is no dependence on the scalar parameters or on the VEVs.
- This happens because S_3 requires the scalar mass matrix to be of the form

$$\begin{pmatrix}
a & b & c \\
b & a & c \\
c & c & d
\end{pmatrix}$$

which always yields (-1, 1, 0) as one eigenvector, regardless of *a*, *b*, *c*.

Scalar masses

The squared masses of the CP-even neutral scalars are given by $m_a^2 = 4\lambda_2 v^2 - 2\lambda_3 v^2 - v_3 (2\lambda_7 v_3 + 5\lambda_8 v) ,$ $m_b^2 = \frac{1}{2v_3} \left[4\lambda_1 v^2 v_3 + 2\lambda_3 v^2 v_3 + 2\lambda_4 v_3^3 - 2\lambda_8 v^3 + 3\lambda_8 v v_3^2 - \Delta m^3 \right] ,$ $m_c^2 = \frac{1}{2v_3} \left[4\lambda_1 v^2 v_3 + 2\lambda_3 v^2 v_3 + 2\lambda_4 v_3^3 - 2\lambda_8 v^3 + 3\lambda_8 v v_3^2 + \Delta m^3 \right] ;$ where $\Delta m^3 = \left[8v v_3 \left\{ 2v v_3^3 \left(2(\lambda_5 + \lambda_6 + \lambda_7)^2 - \lambda_4 (2\lambda_1 + \lambda_3) \right) + 2\lambda_8 v^4 (2\lambda_1 + \lambda_3) - 3\lambda_4 \lambda_8 v_3^4 \right] \right]$

$$+12\lambda_8 v^2 v_3^2 (\lambda_5 + \lambda_6 + \lambda_7) + 12\lambda_8^2 v^3 v_3 \bigg\} + \bigg\{ 2v^2 v_3 (2\lambda_1 + \lambda_3) + 2\lambda_4 v_3^3 - 2\lambda_8 v^3 + 3\lambda_8 v v_3^2 \bigg\}^2 \bigg]^{\frac{1}{2}}$$

Yukawas

Chen, Frigerio, Ma (2004)

Mass terms for charged leptons (quarks are treated identically):

 $(\phi_1 L_2 + \phi_2 L_1) \ell_1^c \qquad (\phi_1 L_2 - \phi_2 L_1) \ell_2^c \qquad L_3 \ell_3^c \phi_3 \qquad L_3 \ell_1^c \phi_3$

After SSB, this leads to the **mass matrix**:

$$\mathcal{M}_{\ell} = \begin{pmatrix} f_4 v_3 & f_5 v_3 & 0 \\ 0 & f_1 v & -f_2 v \\ 0 & f_1 v & f_2 v \end{pmatrix}$$

- The specific alignment $\langle \phi_1 \rangle = \langle \phi_2 \rangle = v$ leads to maximal atm. mixing
- Special vacuum alignments like this are needed in most models based on discrete symmetries