

Reconstructing Exceptional New Physics from LHC data

Peter Athron

Contents

❖ Title is a little aspirational – Not there yet!

- E₆SSM model
- cE₆SSM
- Mass Spectra
- Phenomenology
- Improved Precision

Contents

❖ Title is a little aspirational – Not there yet!

E₆SSM model

- cE₆SSM
- Mass Spectra
- Phenomenology
- Improved Precision

Road map

Understand the model

What does it look like?

Signatures

Contents

❖ Title is a little aspirational – Not there yet!

Road map

- E₆SSM model
- cE₆SSM
- Mass Spectra
- Phenomenology
- Improved Precision

Understand the model

What does it look like?

Signatures

parameters masses

precision low energy observables

Incorporate within a fitting package, e.g. Fittino

Exceptional Supersymmetric Standard Model

[Phys.Rev. D73 (2006) 035009, Phys.Lett. B634 (2006) 278-284 S.F.King, S.Moretti & R. Nevzorov]

• E₆ inspired model with an extra gauged U(1) symmetry

$$SU(3) \times SU(2) \times U(1)_Y \times U(1)_N \qquad \tan \theta = \sqrt{15}$$

$$U(1)_N = \cos \theta \, U(1)_\chi + \sin \theta \, U(1)_\psi$$
 Solves the μ -problem!

Exceptional Supersymmetric Standard Model

[Phys.Rev. D73 (2006) 035009, Phys.Lett. B634 (2006) 278-284 S.F.King, S.Moretti & R. Nevzorov]

E₆ inspired model with an extra gauged U(1) symmetry

$$SU(3) imes SU(2) imes U(1)_Y imes U(1)_N \qquad an heta = \sqrt{15}$$

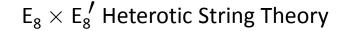
$$U(1)_N = \cos heta \, U(1)_\chi + \sin heta \, U(1)_\psi$$
 "Inspired" by: Solves the μ -problem!
$$E_6 \to SO(10) imes U(1)_\psi$$

$$\downarrow SU(5) imes U(1)_\chi$$

$$\downarrow SU(5) imes U(1)_\chi$$

$$\downarrow SU(3)_C imes SU(2)_W imes U(1)_Y$$

Exceptional Supersymmetric Standard Model


[Phys.Rev. D73 (2006) 035009, Phys.Lett. B634 (2006) 278-284 S.F.King, S.Moretti & R. Nevzorov]

• E₆ inspired model with an extra gauged U(1) symmetry

$$SU(3) imes SU(2) imes U(1)_Y imes U(1)_N \qquad an heta = \sqrt{15}$$

$$U(1)_N = \cos heta \, U(1)_\chi + \sin heta \, U(1)_\psi$$
 "Inspired" by: Solves the μ -problem!
$$E_6 \to SO(10) imes U(1)_\psi$$

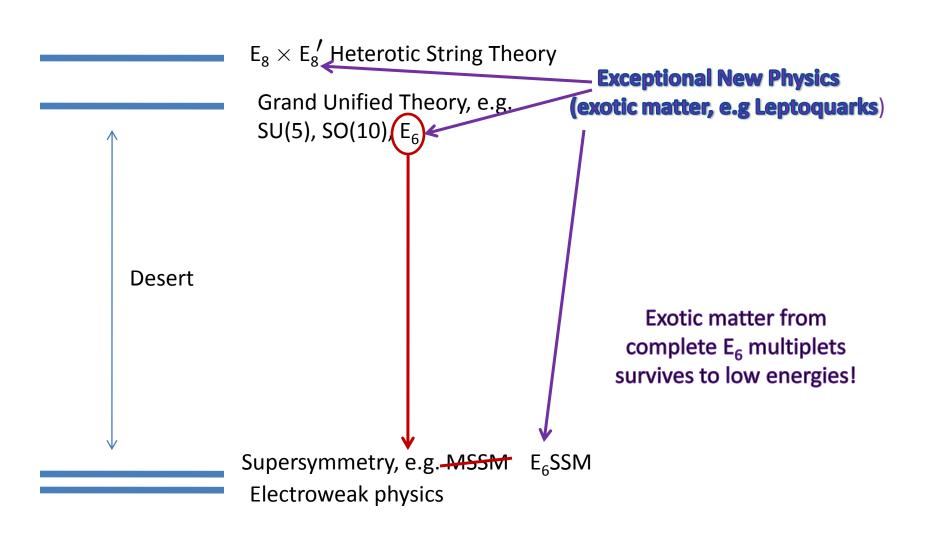
$$\downarrow SU(5) imes U(1)_\chi$$

$$\downarrow SU(5) imes U(1)_\chi$$

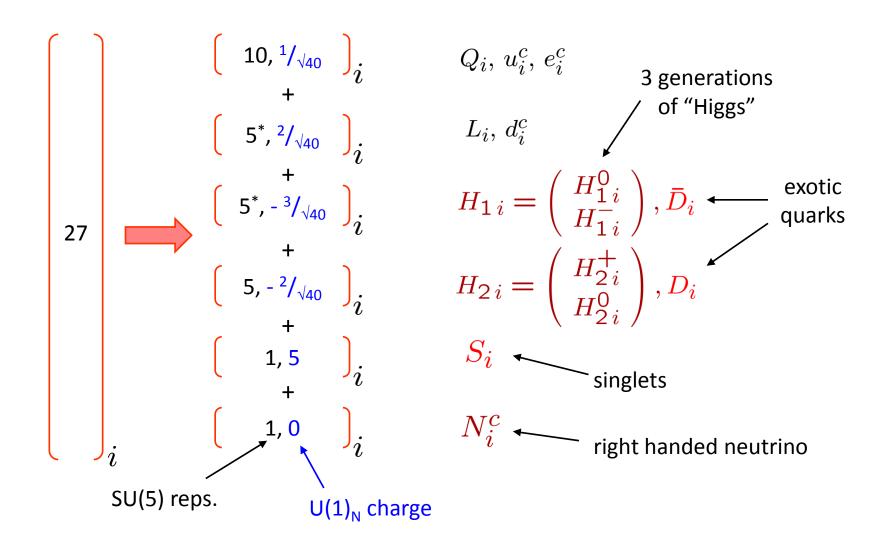
$$\downarrow SU(3)_C imes SU(2)_W imes U(1)_Y$$

- Matter from 3 complete generations of E₆
 - ⇒ automatic cancellation of gauge anomalies

Exceptional New Physics just beyond the Standard Model

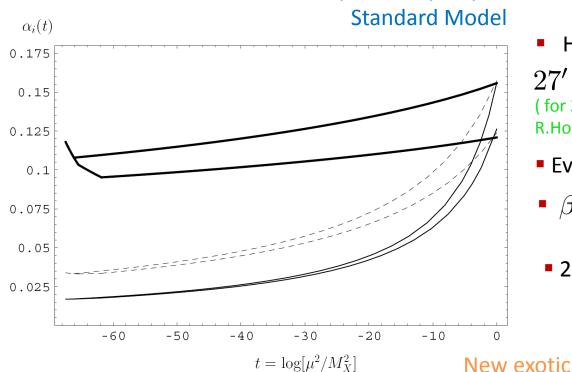


Grand Unified Theory, e.g. SU(5), SO(10), E₆


Desert

Supersymmetry, e.g. MSSM Electroweak physics

Exceptional New Physics just beyond the Standard Model



All the SM matter fields are contained in one 27-plet of E₆ per generation.

Gauge Coupling Unification

Excepional Supersymmetric

• Higgs \in E $_6$ 27plets \Rightarrow relics of 27' and $\overline{27}'$, (H' and \overline{H}') .

(for 2step unification without relics see R.Howl, S.F. King PLB 652, 331, JHEP 0801:030)

- Evolution changed dramatically!
- $\beta_s = 0$ at one loop!
- 2-loop and threshold effects important!

SU(N) gauge theory Gauginos
$$b_N = \frac{11}{3} N - \frac{2}{3} N - \frac{1}{3} n_f - \frac{1}{6} n_f$$

Number of fermions

matter!

U(1) gauge
$$b_1 = -\frac{1}{3} \sum_i Y_i^2$$

Number of fundamental scalars representation)

Discrete Symmetries

- Problem: proton decay
- \triangleright **Solution:** impose Z_2^B or Z_2^L symmety. Like R-parity but $\,D$ is odd, $\,\tilde{\!D}$ is even. $Z_2^B \Rightarrow leptoquarks$; $Z_2^L \Rightarrow diquarks$.
- **Changing Neutral Currents**,
- Problem: large Flavour > Solution: Approximate Z₂^H 3^{rd} gen Higgs $(H_{1,3}, H_{2,3} \text{ and } S_3)$: even, all others: odd.

Discrete Symmetries

- Problem: proton decay
- \triangleright **Solution:** impose Z_2^B or Z_2^L symmety. Like R-parity but D is odd, \tilde{D} is even. $Z_2^B \Rightarrow leptoquarks$; $Z_2^L \Rightarrow diquarks$.
- **Changing Neutral Currents**,
- Problem: large Flavour > Solution: Approximate Z₂^H 3^{rd} gen Higgs ($H_{1.3}$, $H_{2.3}$ and S_3): even, all others: odd.

Dropping suppressed term etc. ..

Superpotential

$$W_{\mathsf{E}_6\mathsf{SSM}} \approx \lambda_i SH_{1,i}H_{2,i} + \kappa_i SD_i \bar{D}_i + h_t H_u Qt^c + h_b H_d Qb^c + h_\tau H_d L\tau^c$$

The Constrained E₆SSM

[PA, S.F.King, D.J.Miller, S.Moretti, R.Nevzorov, PRD 80, 035009 (2009), PLB 681, 448-456, (2009)]

lacktriangle At ${
m M_{
m X}}pprox 10^{15}\,{
m GeV}$ $M_{
m 1/2}$ Universal Gaugino Mass

A Universal trilinear soft mass

 m_0 Universal scalar mass

Parameters: $\lambda_i, \, \kappa_i, \, m_0, \, M_{1/2}, \, A$

The Constrained E₆SSM

[PA, S.F.King, D.J.Miller, S.Moretti, R.Nevzorov, PRD 80, 035009 (2009), PLB 681, 448-456, (2009)]

ullet At ${
m M_{X}}pprox 10^{15}\,{
m GeV}$ $M_{1/2}$ Universal Gaugino Mass

A Universal trilinear soft mass

m₀ Universal scalar mass

Parameters: $\lambda_i, \, \kappa_i, \, m_0, \, M_{1/2}, \, A$

• Use EWSB Replace soft parameters with $\langle S \rangle = \frac{s}{\sqrt{2}}, \, M_Z, \, \tan \beta$

Free Parameters: $\lambda_i, \ \kappa_i, \ s$

The Constrained E₆SSM

[PA, S.F.King, D.J.Miller, S.Moretti, R.Nevzorov, PRD 80, 035009 (2009), PLB 681, 448-456, (2009)]

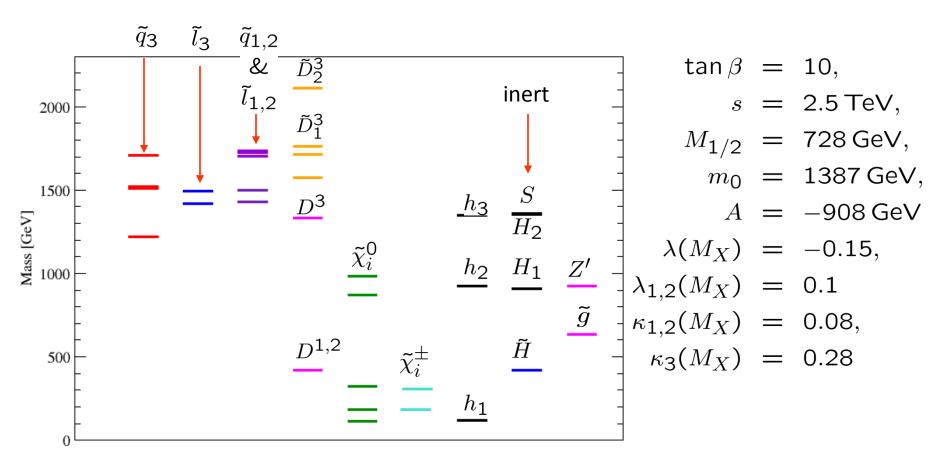
ullet At ${
m M_{X}}pprox 10^{15}\,{
m GeV}$ $M_{1/2}$ Universal Gaugino Mass

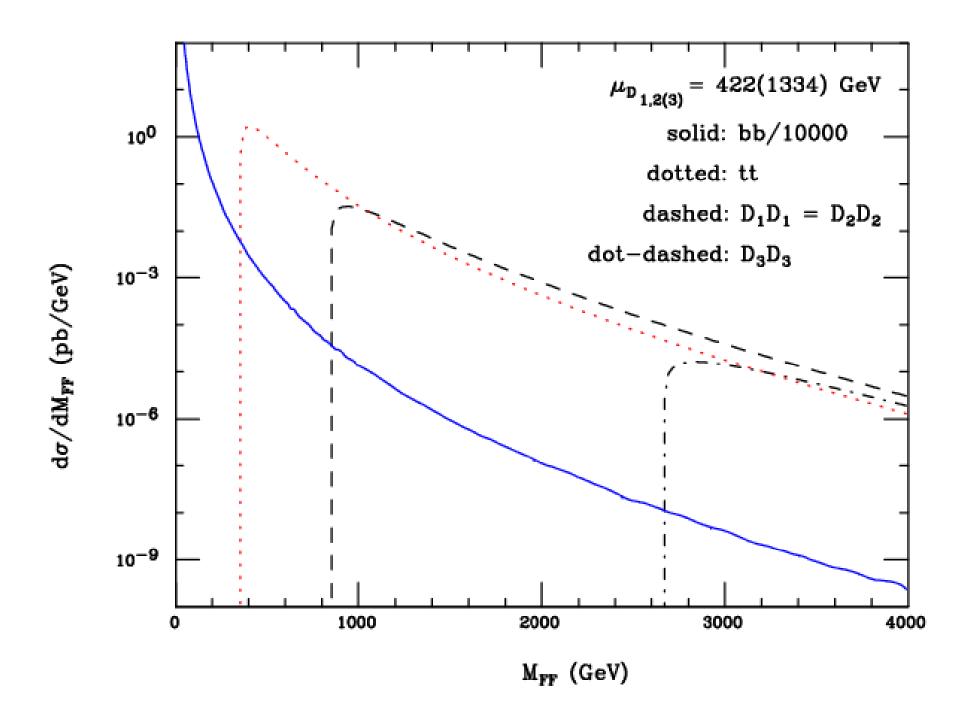
A Universal trilinear soft mass

m₀ Universal scalar mass

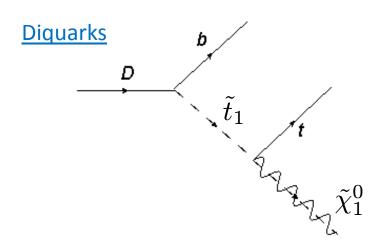
Parameters: $\lambda_i, \, \kappa_i, \, m_0, \, M_{1/2}, \, A$

• Use EWSB Replace soft parameters with $\langle S \rangle = \frac{s}{\sqrt{2}}, \, M_Z, \, an eta$

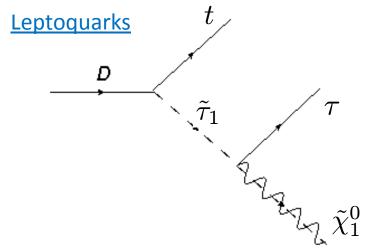

Free Parameters: $\lambda_i, \, \kappa_i, \, \, s$


Renormalisation Group Equations (RGEs)

- To connect these high scale conditions with low energies we use RGEs for:
 - Gauge and Yukawa couplings (2 loop).
 - > Soft breaking gaugino and trilinear masses (2 loop).
 - Soft scalar masses (1 loop).


Light Z' Scenario

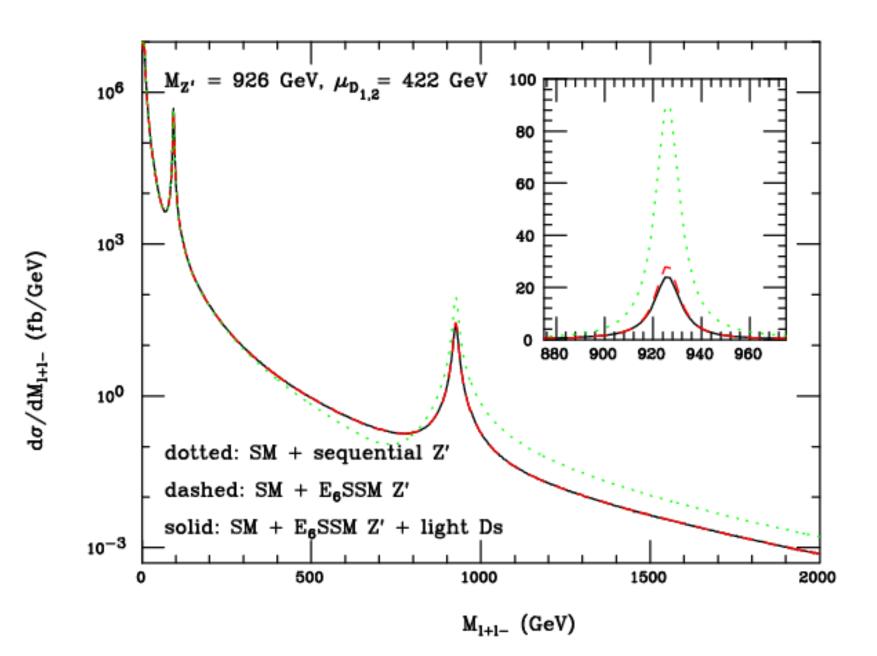
- Scenario with a sub TeV Z' (926 GeV)
- Heavy sfermions and light gluino (general prediction)
- Light exotic quarks



Exotic Signatures

Enhancement of

$$pp \to t\bar{t}b\bar{b} + E_T^{miss} + X$$

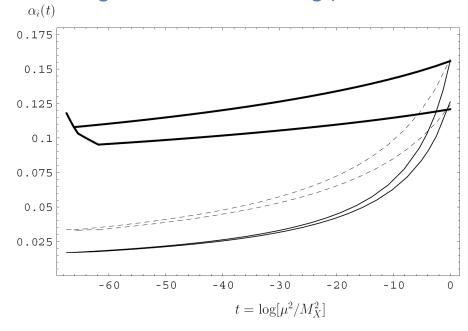


$$pp \to t\bar{t}\tau\bar{\tau} + E_T^{miss} + X$$
$$pp \to b\bar{b} + E_T^{miss} + X$$

Scalar partners

Scalar $ilde{D}$ similar, but without missing energy from χ_1^0

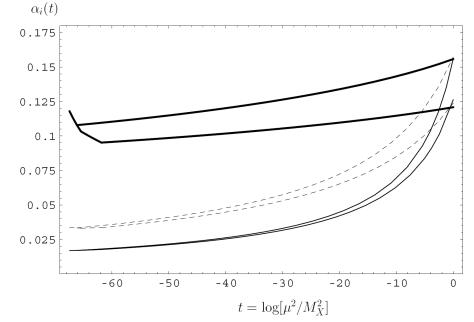
e.g.
$$pp \to t \bar t \tau \bar \tau + X$$


Exotic Phenomenology

- Sub-TeV Z' not (yet!) ruled out in cE_6SSM .
 - Sfermions heavy in such scenarios
 - ➤ Light Exotics Diquarks/Leptoquarks, singlinos and higgsinos possible
 - Observation from Drell-yan production.
 - Exotic matter could make a detctable contribution here
- lacktriangle Exotic quark production comparable with tar t
 - Could give striking signature
 - ➤ More phenomenological studies important

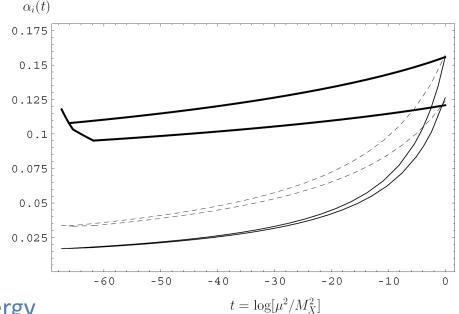
Threshold Corrections

(In collaboration with Dominik Stockinger and Alexander Voigt)


■ Varying $T_{ESSM} \Rightarrow 10 - 15\%$ effect

Threshold Corrections

(In collaboration with Dominik Stockinger and Alexander Voigt)


- Varying T_{ESSM} ⇒ 10 -15% effect
- Obstacle for precision calculations
- Solution: include individual sparticle thresholds iteratively.

Threshold Corrections

(In collaboration with Dominik Stockinger and Alexander Voigt)

- Varying $T_{ESSM} \Rightarrow 10 15\%$ effect
- Obstacle for precision calculations
- Solution: include individual sparticle thresholds iteratively.

Full theory

Particles: Heavy, masses M_i

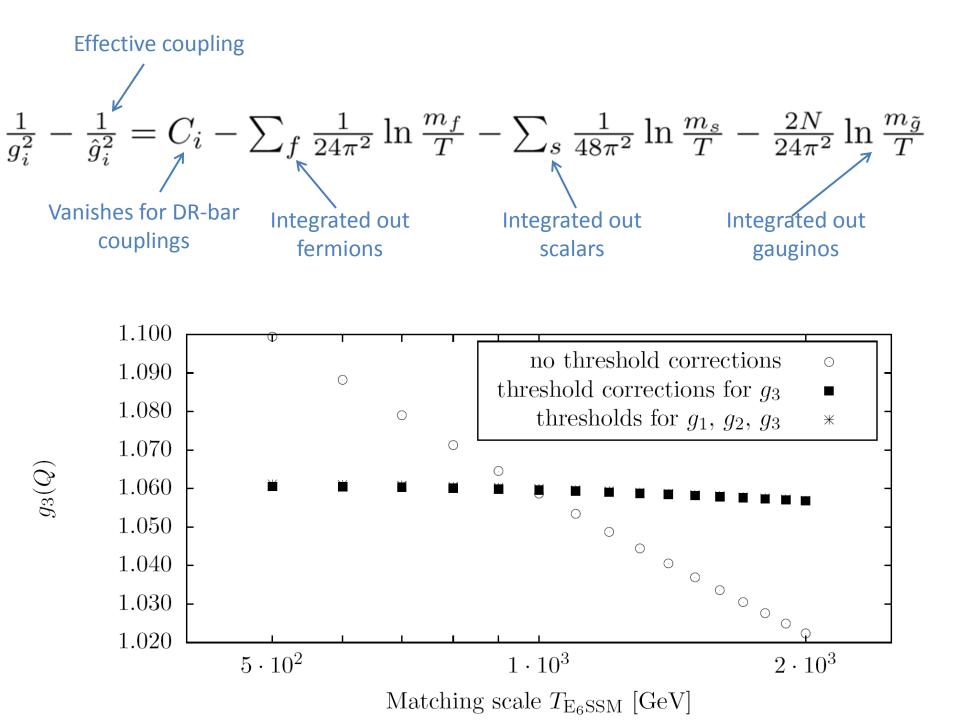
Couplings: $g''_{ij}M_iM_j$ $g'_{ij}m_iM_j$

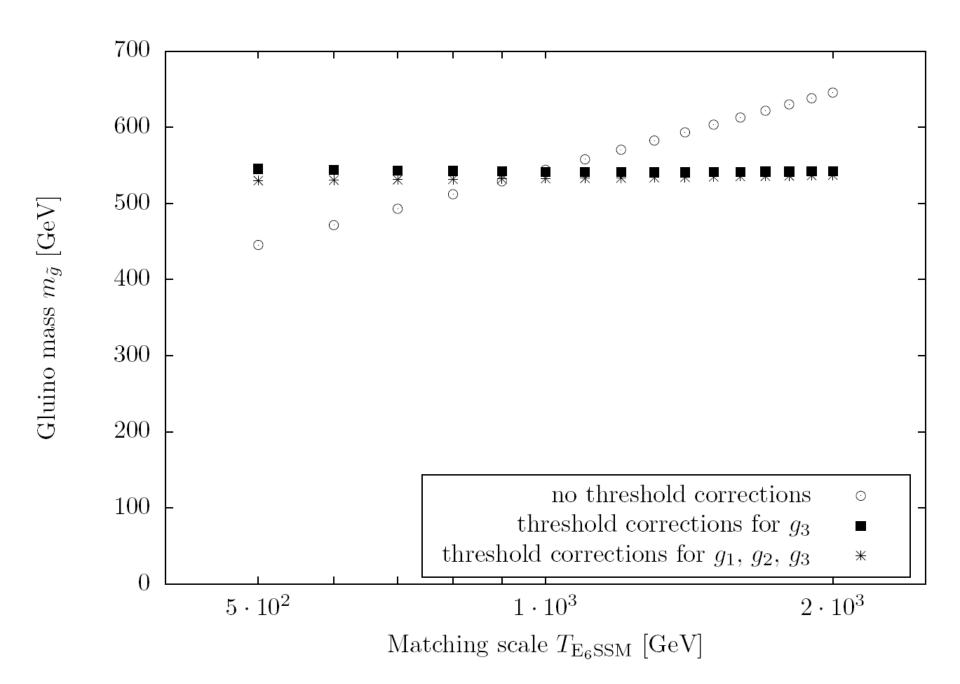
 $T_M \leq M_i$

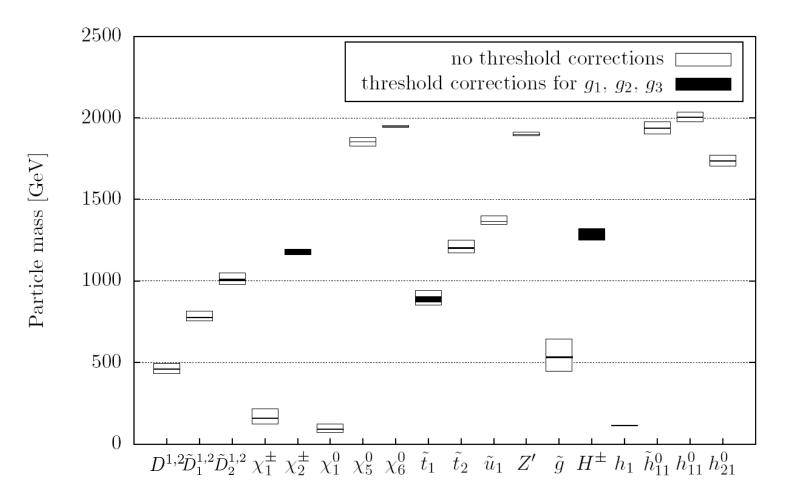
Energy

Light, masses m_i $g_{ij}^F m_i m_j$

$$g_{ij}^F = g_{ij}^E + \zeta_{ij}$$
 Matching scale


Matching scale


Effective theory


Particles: Light only, masses m_i

Couplings: $g_{ij}^E m_i m_j$

Equate Green's **Functions**

- Threshold Corrections important for precision.
 - > Individual sparticle thresholds included for gauge couplings.
 - > Large reduction in threshold scale dependence.
 - Residual dependence from Yukawa thresholds (coming soon)

- E₆ / extra U(1) SUSY models, (e.g. cE₆SSM) well motivated
 - > cE6SSM investigated ,parameter space explored.
 - General prediction of heavy sfermions and light gluino
- Phenomenology of the cE₆SSM:
 - > If light exotics can be copiously produced, viable scenarios shown.
 - > Z' can give rise to striking signatures. Impact of the exotics could be visible. Sfermions contribution low in considered point.

- E₆ / extra U(1) SUSY models, (e.g. cE₆SSM) well motivated
 - > cE6SSM investigated ,parameter space explored.
 - General prediction of heavy sfermions and light gluino

Phenomenology of the cE₆SSM:

- > If light exotics can be copiously produced, viable scenarios shown.
- > Z' can give rise to striking signatures. Impact of the exotics could be visible. Sfermions contribution low in considered point.

Improved precision

- Individual sparticle thresholds added for gauge couplings.
- > Threshold scale dependence significantly reduced.
- Residual dependence shows that Yukawa threshold corrections important
- Many other corrections, e.g. shifts to pole, two loop scalar mass RGEs...

- E₆ / extra U(1) SUSY models, (e.g. cE₆SSM) well motivated
 - > cE6SSM investigated ,parameter space explored.
 - General prediction of heavy sfermions and light gluino

Phenomenology of the cE₆SSM:

- > If light exotics can be copiously produced, viable scenarios shown.
- > Z' can give rise to striking signatures. Impact of the exotics could be visible. Sfermions contribution low in considered point.

Improved precision

- Individual sparticle thresholds added for gauge couplings.
- > Threshold scale dependence significantly reduced.
- Residual dependence shows that Yukawa threshold corrections important
- Many other corrections, e.g. shifts to pole, two loop scalar mass RGEs...

Extracting cE₆SSM from data:

> Extremely important if E₆SSM like signatures are observed.

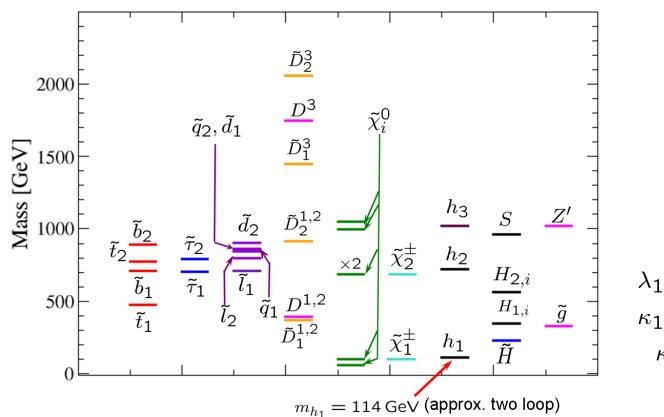
- E₆ / extra U(1) SUSY models, (e.g. cE₆SSM) well motivated
 - > cE6SSM investigated ,parameter space explored.
 - General prediction of heavy sfermions and light gluino

Phenomenology of the cE₆SSM:

- > If light exotics can be copiously produced, viable scenarios shown.
- > Z' can give rise to striking signatures. Impact of the exotics could be visible. Sfermions contribution low in considered point.

Improved precision

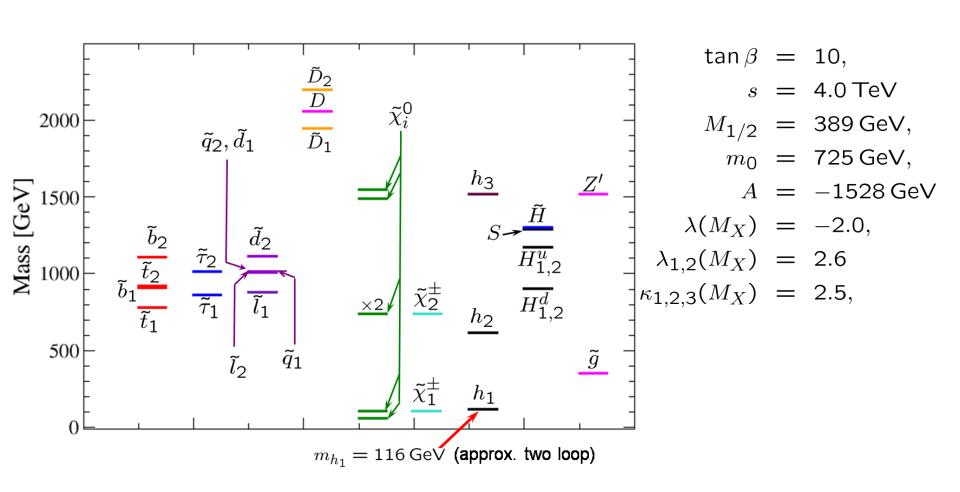
- Individual sparticle thresholds added for gauge couplings.
- > Threshold scale dependence significantly reduced.
- Residual dependence shows that Yukawa threshold corrections important
- Many other corrections, e.g. shifts to pole, two loop scalar mass RGEs...


Extracting cE₆SSM from data:

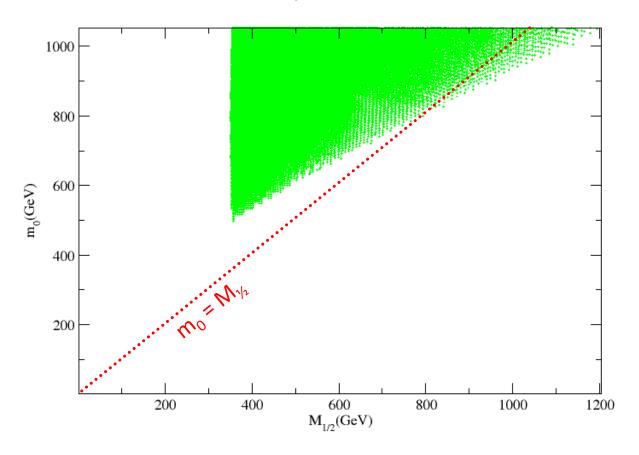
- > Extremely important if when E₆SSM like signatures are observed
- Lots to do...work in progress...

BACK UP SLIDES

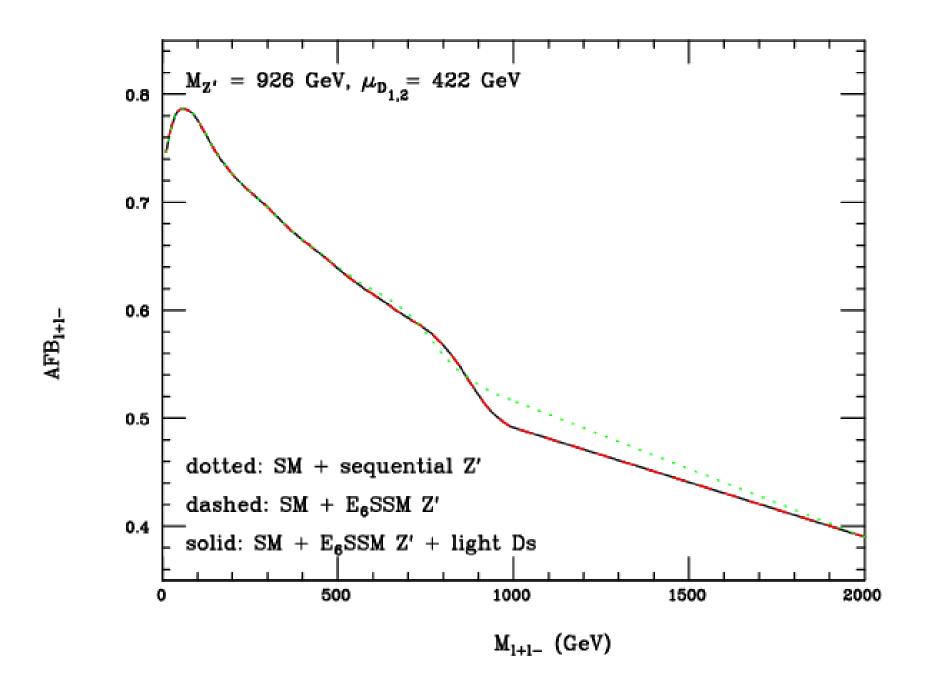
Scenario (Light exotic fermions and scalars)


- **Description** Large κ drives electroweak symmetry breaking
- With a universal exotic coupling κ at the GUT scale ⇒ exotic quarks are always heavy $(μ_D = \frac{κ_i(M_S)}{\sqrt{2}}s)$
- lacksquare Break κ universality and exotic quarks can be light

$$an eta = 10,$$
 $s = 2.7 \, {\rm TeV},$
 $M_{1/2} = 358 \, {\rm GeV},$
 $m_0 = 623 \, {\rm GeV},$
 $A = 757 \, {\rm GeV}$
 $\lambda(M_X) = -0.40,$
 $\lambda_{1,2}(M_X) = 0.1$
 $\kappa_{1,2}(M_X) = 0.08,$
 $\kappa_3(M_X) = 0.43$

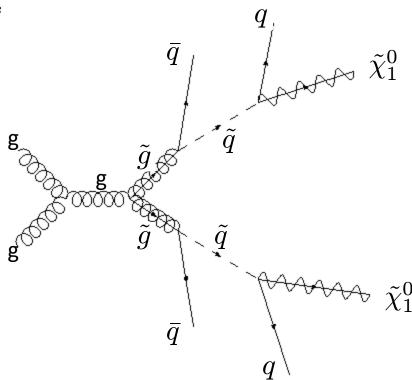

Caution: It is possible all the exotics are heavy and challenging to detect, e.g.

Scenario B (Pessimistic)



Allowed regions in the m_0 - M_{χ_2} plane

Fix $\tan\beta=10,~\lambda_{1\,2}$ = 0.1, vary λ_3 and $\bullet=\bullet_{1,2,3}$ and s:



Note: since m_0 , $M_{1/2}$ are derived, some possible regions are sparsely populated

- It is possible all the exotics are heavy and challenging to detect
- Even in such a scenario there is still a striking prediction, which is a general result of the cE₆SSM.
 - > All spectra have a clear hierarchy
 - > Gluino is lighter than all sfermions of ordinary matter
 - ➤ Strong contrast with typical MSSM scenario
 - ➤ Result of the RGE evolution
 - ightharpoonup Decay $ilde{g}
 ightarrow ar{q} ilde{q}^*
 ightarrow q ar{q} + E_T^{Miss}$
 - \rightarrow Appreciable enhancement of:

$$pp \to q\bar{q}q\bar{q} + E_T^{Miss} + X$$

E₆SSM Superpotential

Imposing Z₂^{B/L} and Z₂^H

$$W_{E_6SSM} \to \lambda_i \hat{S}(\hat{H}_{1i}\hat{H}_{2i}) + \kappa_i \hat{S}(\hat{D}_i \hat{\overline{D}}_i) + f_{\alpha\beta} \hat{S}_{\alpha}(\hat{H}_d \hat{H}_{2\beta})$$

$$+ \tilde{f}_{\alpha\beta} \hat{S}_{\alpha}(\hat{H}_{1\beta} \hat{H}_u) + \frac{1}{2} M_{ij} \hat{N}_i^c \hat{N}_j^c + \mu'(\hat{H}' \hat{\overline{H}}')$$

$$+ h_{4j}^E (\hat{H}_d \hat{H}') \hat{e}_j^c + h_{4j}^N (\hat{H}_u \hat{H}') \hat{N}_j^c + W_{MSSM}(\mu = 0)$$

■ To ensure only 3rd gen. gets vevs, we choose:

$$\kappa_i \sim \lambda_3 \ge \lambda_{1,2} \gg f_{\alpha\beta}, \tilde{f}_{\alpha\beta}, h_{4j}^E, h_{4j}^N.$$

• Further integrating out super heavy, right handed neutrinos, and dropping μ' which decouples, leaves:

$$W_{\mathsf{E}_6\mathsf{SSM}} \approx \lambda_i SH_{1,i}H_{2,i} + \kappa_i SD_i \bar{D}_i + h_t H_u Qt^c + h_b H_d Qb^c + h_\tau H_d L\tau^c$$