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» Our problem
fine tuning of inflaton and curvaton potential

- Approach to the problem
6D gauge theory = M*x T2 (toy model)

Aéo’o) = ¢ (inflaton) Aéo’o) = o (curvaton)

- We find

It is possible to build a cosmological inflation model
based on the higher dimensional gauge theory

without fine tuning
Curvaton is responsible for only non Gaussian perturbation




1.Introduction

e The model of cosmological inflation

I. The mechanism of inflation

the proper initial condition for the Big-Bang model

orizom, , -

ii. Generating the curvature perturbation ¢

the origin of the large scale structure and -
anisotropies in CMB(Cosmic Microwave Background) = ™ 107°




e The mechanism of inflation

The standard realization is slow-roll inflation

M2 [V 2 V"
[ slow-roll conditions €, || < 1] €= 2P (V) nEMJ%V

= inflaton potential V (¢) (~ P¢) flat

¢ Generating the curvature perturbation

1. Inflaton ¢ 2. Curvaton O [Lyth et al.(2002)]
- non Gaussian perturbation
- a large spectral index s (~ 0.98-0.99)
(scale dependence of the perturbation)
3. Inflaton and curvaton

For the (power spectrum of the) curvature perturbation

(Pc ~ 1077 ) (WMAP)  (GG) = (167 /)62 1, Pe(k)

(g = Fourier component of C(T)




e non Gaussian perturbation (<< Gaussian)

(€, €z Ctyreede £ O

This gives further restrictions on inflation models.
(PLANCK satellite)

(

e,n<K1,Pr~ 1077 = . ¢>Mp
. severe restrictions to
the coupling constants of V(¢)(V (o))

fine-tuning problem in inflation

- It is difficult to build a 4D inflation model which contains
gquantum effects.

- We consider higher dimensional gauge theory
for the model of inflaton and curvaton.

[Qb, 0 : extra components of higher dimensional gauge field, A!” ]




- In this theory, after compactification, a flat(and small) potential
arises through the radiative corrections.

- The potential obtained as a function of the Wilson line,
V =V(e") <@m gauge invariant, shift symmetry, finite
- A possible solution for the fine-tuning problem

= applications gauge-Higgs [Hatanaka et al.(1998)]
(0) — m;
A, = Higgs h
extranatural inflation [Arkani-Hamed et al.(2003)]

0 .
A?(/ ) = inflaton )
Higgs-inflaton [Inami et al.(2009)]

0
AP = ¢ =h

» There is an application of the higher dimensional gauge
theory to only curvaton. [Dimopoulos et al.(2003)]

- New point

We use the potential for both of inflaton and curvaton derived
from the higher dimensional gauge theory.




2. Toy Model and one-loop effective potential

1 _
- 6D SU(2) gauge theory L = —§TrFMNFMN —
- Compactification = M* x 72
1
K =
AM(£U 7y57y6) \/m

Rs, Rg : compactification radii L5 = 2756

Z Ag@’m) (x,u)ez'(ny5/R5—|—my6/R6).

n,m=—oo

- We assume
{Aéo’o) _

¢ (inflaton) Aéo’o) =0 (Curvaton)J

To evaluate the effective potential we allow A" and A"
to have VEVs of the form

1 g O 1 0 :
(Aé0’0)> S ( 0 o ) , (Aé0’0)> = ( g ) . g : coupling

gLs gLg —p

L

0 and ¥ (constants) are given by the Wilson line phases g/ dy (ALY (a = 5,6)

0




% We assume that quantum gravity effects are negligible.
= Compactification radii, R5 ¢ are stable.




e one-loop effective potential

o Z Z (2R j rzys (14 cos(2R0))(1 + cos(2lp)) =2 cos(kd) cos(l))
k=1 I=1

V:aff<07 @)

T

+Z

+ Const

1

(RS (1 4 cos(2k0) — 2 cos(k0))

l6R6

+ cos(2ly) — 2 cos(lp)) + Z
k=1

- Inflaton and curvaton are defined as the fluctuations around a minimum.
1
¢ = f5(0(2") —m), o= felp(a")—m) [fo6=

9L5,6
- The leading terms (k=1 and |=1) is a good approximation to Ve .

RsRg

i

Vig,o) = - =) —1) — 2(cos(

) 1eos(Z) - 1))

[ (e )~ Dot 2 7

1 8
" (Rs TR R§>3> (cos(2 ) -

fo

SE -
R  (R3 + Rg)°

) (cos(%) —1)+ (0, fo < ¢, fs)] -

J

- V ~ interaction terms between the inflaton and curvaton

+self-interaction terms of the curvaton+inflaton...




e The effective potential with Rs = rrRs for two values of rr = R5/Rs.

-+ The contribution of the inflaton to the energy density of
the Universe becomes dominant as the ratio 7"r decreases.




3. Constraints for the curvaton model

. We consider the two alternative situations for P,

(I) PC = Pcur; Pint < Peur - parameters
(II) PC — Pcur + 7Dinf g, R57 RG

. Constraints [Lyth et al.(2002),Bartoro et al.(2002),Ichikawa et al.(2008)...]

- Slow-roll inflation e-foldings

L (Ve Y 2 | Voo &
eziMp(V((b,O)) <1, |ngel = Mp W‘«l N = ) Hdt ~ 50 — 60

H : Hubble parameter
- The light field condition |my, /Hy| < 1 * :horizon exit

The curvaton does not diluted away during inflation.

. P 8 [(H.\"
- tensor to scalar ratio r = —h <0.2, Pp= ( )

gravitational wave contribution is negligible.




for generating the curvature perturbation

7Dinf

- spectral index
Ns =1 — 264 + 2950+« = 0.96,

() P¢ = Peur + Pinr = 2.45 x 1077

ne =1 — 2€, —

- non-Gaussianity parameter fnr < 100

the size of non-Gaussianity only an inflaton = fnz ~ O(107?)




4. Result

- parameters of our model Rs,rr = R5/Rg, f5 = 1/(27gRs5), ¢, 04

- slow-roll inflation = f5 = 10Mp

(1) Pewr = 2.45 x 1077

= spectral index ng ~ 0.98 —0.99  WMAP data ns = 0.960 + 0.013

The curvaton dominance does not holds,
unless we allow an artificially larger error to 115.




(I1) Pewr + Pint = 2.45 x 1077
Js = 10Mp

N =50—-60 = ¢« ~13Mp

- All of the constraints are satisfied.
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(

~38x%x107% —44x%x107°
Rs~ (1.5x1071% — 1.7 x 1071 GeV ™+
R~ (7.6 x 107" — 8.3 x 10717) GeV ™!

\_

InL

is at most O(1)

7DCLlI‘

~0.04 = The curvaton contribution to
Pinf

the curvature perturbation is not sizable.




¢ |t turned out that the curvaton model is realized only
when both the inflaton and the curvaton contribute to
the curvature perturbation.

¢ The contribution of the curvaton to the curvature
perturbation is very small compared with that of the
inflaton, P.../Pis ~ 0.04 .

e The curvaton is responsible for only generating
the non-Gaussian perturbation.

fnr will soon be measured to the accuracy of /v ~ 1
fnr =3 has a good chance of detection.




